
Review of Basic Java

1 Background

The course is a follow-on to your first programming course in Java. It is assumed you are
already familiar with the basic elements of Java (such as Console, print, int, double, boolean,
char, String, variables and assignment, arrays, if-while- and for-statements, static methods,
parameters). We will do some revision, however, in particular methods and parameters.

2 Revision programs

Below are some elementary programs to refresh your understanding. You should be able to
understand them fully.

Example: Larger of two integers
The following program reads two integers and calculates the larger of the two. An example of
input/output is (input is shown in italics):

Enter two integers:

-17

23

23 is the larger.

class LargerOfTwo {

 public static void main(String[] args) {
 int m, n, larger;
 System.out.println(“Enter two integers: ”);
 m = Console.readInt(); n = Console.readInt();
 if (m>n) {
 larger = m;
 }

Review of Java © J. M. Morris Page 1.1

 else {
 larger = n;
 }
 System.out.println(larger + “ is the larger.”);
 }

}

Note that when chain brackets enclose just a single statement they can be omitted. For
example, the if-statement in the preceding program could be equally well written as

 if (m>n) larger = m;
 else larger = n;

Example: Counting letters and digits
The following program reads a line of text and counts the number of letters and the number of
digits. A typical execution looks like (input is shown in italics):

Enter a line of text...

This is 2001.

Number of letters 6

Number of digits 4

The program uses method readChar() from class Console; it reads a single character from the
keyboard.

class CharCount {
 public static void main (String argv[]) {
 int numLetters = 0; int numDigits = 0;
 System.out.println("Enter a line of text...");
 char c = Console.readChar();
 while (c != '\n') {
 if (c>='0'&& c<='9') numDigits++;
 else if ((c>='A' && c<='Z') || (c>='a' && c<='z'))
 numLetters++;
 c = Console.readChar();
 }
 System.out.println("Number of letters: " + numLetters);
 System.out.println("Number of digits: " + numDigits);

Review of Java © J. M. Morris Page 1.2

 }

Note that the end-of-line character is denoted by '\n'. When you wish to read an input until
a certain value is entered (in this example, an end-of-line character), you must use a while-loop
rather than a for-loop, and you must input both before the loop and at the end of the loop body
(seek out for the two instances of c = Console.readChar() above). You should
understand how &&’s and ||’s are used to encode complex conditions: above, c>='A' &&
c<='Z' encodes “c is an upper case letter”, and (c>='A'&& c<='Z') || (c>='a'&& c<='z')
encodes “c is either an upper case or a lower case letter”. You should also understand that if no
boolean condition in an if-statement evaluates to True, then the if-statement has no effect. For
example, if the value read into c is a punctuation mark (such as a comma or period), then no
incrementing of numLetters or numDigits takes place.

Example: Best student
In the following larger example, the program reads a 100 lines from the keyboard. Each line
contains a student mark followed by the name of the student. The program displays the name
of the best student (i.e. the one with the highest mark). An example of input is:

57 Michael Murphy

89 Patrick James McMahon

78 Jenny Smith

.....

This will give rise to an output such as

The best student is Patrick James McMahon who scored 89 marks.

class BestStudent{
 public static void main(String[] args) {
 final int numStudents = 100; // number of students
 int bestMark = -1; // Best mark seen so far (-1 for clean start)
 String bestStudent = ""; // Name of best student so far.
 int i = 0; // number of students read so far
 while (i<numStudents) {
 int m = Console.readInt(); String s = Console.readString();
 // Is this student the best so far?
 if (m>bestMark) { // Yes, so note the details
 bestMark = m; bestStudent = s;
 }

Review of Java © J. M. Morris Page 1.3

 i++;
 }
 // Print result
 System.out.println("The best student is " + bestStudent +
 " who scored " + bestMark + " marks.");
 }
}

3 Type conversion reviewed

The number 2000, say, can be represented in a program in several ways. If 2000 arises as, say,
the maximum number of data items that the program is prepared to process, then 2000 is best
represented as an integer. On the other hand, if 2000 arises as the average of a collection of real
numbers and it is just accidental that it is a whole number, then we think of 2000 as being the
real number 2000.0. Finally, if 2000 is a telephone number then it is appropriate to represent it
as the string “2000”. (It would be quite wrong to treat a telephone number as an integer,
because many telephone numbers start with 0, and the integer type does not distinguish
between, say, 08612345 and 8612345.)

Similar remarks hold for other values. For example, a letter of the alphabet can be represented
as a character or as a string of length 1. Usually it is appropriate to represent it as a character of
course, but not always.

Occasionally we need to convert representations, i.e. we need to translate a value represented
in some type to a corresponding representation in another. For example, we may need to
convert the string “2000” to the integer 2000. This is called “type conversion”. The usual
mechanism in Java for type conversion is called “type casting”: we write (T) x to convert x to
type T. We give some examples of the use of this below, and discuss some other useful type
conversion mechanisms.

Converting reals to integers
You can convert a real to an integer in either of two ways. The first way is to prefix the real
with (int), as in either of the following

 (int) 3.14
 (int)(3.14*2.1).

Review of Java © J. M. Morris Page 1.4

The second pair of brackets in (int)(3.14*2.1) indicates that the type conversion is to apply to
the entire expression and not just the first term. The fraction is lost in the conversion. For
example, (int) 3.95 is 3.
It is usually more appropriate to round off a real before converting it to an integer. For x any
real, Math.round(x) yields x rounded off; for example, Math.round(3.95) yields 4.0, and
Math.round(3.14) yields 3.0. The best way to convert a real x to an integer is (int)
Math.round(x). For example,

 (int)Math.round(3.95) = 4.

Converting integers to reals
To convert an integer to a real, prefix it with (double), as in

 (double) 4

which yields 4.0. Actually, you don’t often have to so this because Java allows you to supply
an integer wherever a real would normally be expected; the conversion takes place
automatically. For example, it is legal to write 3.14*27 (the result will be a real).

Converting strings to integers
If a string s encodes an integer (such as "37" or "-37", say, but not any of "3.14" or "37.0" or
"1+3", or "three") then Integer.parseInt(s) yields the encoded value as an int type. For example,

 Integer.parseInt("12") = 12.

Converting integers and reals to strings
In many cases, you can supply a number where a string would normally be expected, and java
will convert it to the corresponding string automatically. You can exploit this to convert a
number to a string: just concatenate it with the empty string. For example,

 ""+37 = "37"

(note that the + here denotes string concatenation, not addition). This trick works because Java
recognises the first argument as a string, treats the + as concatenation, and automatically
converts the second argument to a string. Here is one more example:

 String year = "2001"; // any year
 String nextYear = "" + (Integer.parseInt(year)+1); // computes following year

Review of Java © J. M. Morris Page 1.5

The outer brackets in (Integer.parseInt(year)+1) are necessary in order for the inner + to be
interpreted as integer addition rather than string concatenation.

Reals are converted to strings similarly; e.g.

 ""+3.14 = "3.14".

Converting strings to reals
If a string s encodes a real number (such as "37.3" or "-37.3") then Double.parseDouble(s)
yields the encoded value as a double. For example,

 Double.parseDouble("3.14") = 3.14.

Summary

x int double char String

int (double) x (char)x ""+x

double (int) x

Math.round(x)

 ""+x

char (int) x ""+x

String Integer.parseInt(x) Double.parseDouble(x)

Review of Java © J. M. Morris Page 1.6

	1 Review of Basic Java
	1 Background
	2 Revision programs
	Example: Larger of two integers
	Example: Counting letters and digits
	Example: Best student

	3 Type conversion reviewed
	Converting strings to integers
	Converting integers and reals to strings
	Converting strings to reals
	Summary

