4 Static Methods: Procedures

1 Review of static methods

A method is a piece of code, neatly wrapped up. It consists of a header as in
public static void main(string[] args)

followed by the code that constitutes the body of the method in chain brackets. All our
programs thus far have been comprised of a class with a single method called main(). Method
main() is invoked, i.e. caused to be executed, by entering an appropriate command at the
command line (such as java MyClass).

A class may contain several methods. Methods other than main() are invoked not from the
command line but from within main(). Indeed the additional methods may in turn invoke still
other methods, and so on. Apart from main(), a method may be invoked many times, as we
shall see. We like to organise a program as a collection of methods to give it structure, i.e. to
break it into mind-sized chunks each of which can be understood and tested more or less as an
independent mini-program.

Methods come in two Kinds: they may be static or instance (also called dynamic). You can tell
a static method from a dynamic method by the presence of the word static in the header. For
example, the following are headers of static methods:

public static void main(string[] args)
static void drawLine(int n)
static double squareRoot(double x)

Static methods are much easier to understand that dynamic methods; for the moment we study
static methods only.

There are two flavours of methods (whether static or dynamic): procedures and functions.
Procedures do something while functions evaluate something. You can tell a procedure from a

Static Methods: Procedures © J. M. Morris Page 4.1

function by the presence of the word void in the header. For example, the following are
headers of procedures:

public static void main(string[] args)
static void drawLine(int n)

Functions, on the other hand, contain a type name in place of the word void, as in

static double squareRoot(double x)
static String surname(String name)

Procedures effect a change in the world. For example, they display something on a screen, or
change the values of variables, or change the contents of a file, or delete a file from a disk.
Functions on the other hand merely inspect the world without changing it. The result of their
inspection is a value of the type mentioned in the header. For example, invoking a function
with header

static double squareRoot(double x)

computes a value of type double. Another way to describe the difference between procedures
and functions is to say that procedures are like complex statements while functions are like
complex expressions.

A method may have an access qualifier (one of private or public), asin:

public static void main(string[] args)
private static double squareRoot(double x)

The access qualifier is not important in small programs and you need not worry about it for the
moment. Method main() must include the access qualifier, but otherwise your programs will
work if you omit all access qualifiers.

2 Procedures

The text of a method is called its definition or declaration. Below is a small example of a static
procedure definition:

Static Methods: Procedures © J. M. Morris Page 4.2

Formal parameter

@id drawLine(int n) {

// Draw a line of n *'s. Assume n>=0.

Vold | itz o;)
while (i<n) {
System.out.print("*"); i++; |« Statements
}
System.out.printin();)

This procedure includes a single “(formal) parameter”, here called n. A parameter is a local
variable which is declared in the header to indicate that it is to be initialised at the point of
invocation. A static procedure is invoked, i.e. its parameters are initialised and its constituent
statements are executed, by an invocation statement in another method (except that main() is
implicitly invoked from the command line). An invocation statement consists of the procedure
name followed by the initial value for the parameters in brackets. A invocation of drawLine
above, for example, with an indication that its parameter n is to be initialised to 5, say, is

drawLine (5) ;
The initial values for parameters, supplied at invocation, are called “arguments” or “actual
parameters”. Arguments can be any expression, as long as the expression matches the type of
the associated parameter. For example, the following is legitimate:

drawLine (2*3+1) ;

The effect of the above statement is exactly that of executing the following code:

) Parameter initialised with

{ int n = 2*3+1; argument
inti=0;)
while (i<n) {
System.out.print("*"); i++; > e Body of drawline
}
System.out.printin();)

Static Methods: Procedures © J. M. Morris Page 4.3

... and similarly for any argument. For more than one parameter, each one is initialised with the
matching argument in the invocation.

Remember that a procedure invocation is a statement. A procedure may be invoked many times
(although it is declared/defined just once).

Below is a simple program which employs more then one method. It reads a succession of
(natural) numbers and for each one draws a line of asterisk’s of that length.

class DrawClass {

static void drawLine(int n) {
// Draw a line of n *'s. Assume n>=0.
inti=0;
while (i<n) {
System.out.print("*"); i++;
}
System.out.printin();

public static void main(String[] args) {
System.out.printIn("Enter one number per line");
while (IConsole.endOfFile()) {

int num = Console.readInt();
drawLine(num); <«—1 An invocation of drawLine

The order in which methods are declared in a class is not significant.

Actually, the full name of a method includes the class name as a prefix followed by a period, as
in DrawClass.drawLine(num). However, the class name is usually omitted when the method is
declared in the same class as the invocation, as above.

More on parameters

If you are not comfortable with parameters, study them again in your textbook — they will be
much used in the course, and you will find life difficult if you do not come to terms with them
early. For the case of zero or multiple parameters, refer to the textbook.

Static Methods: Procedures © J. M. Morris Page 4.4

Variables which are declared within a method are said to be “local” to the method. They are
created during the execution of the method, and do not survive after the invocation has
completed. The same holds true for the method’s parameters, of course — the only thing special
about parameters is their manner of initialisation.

If a method is invoked repeatedly, its local variables and parameters are created anew for each
invocation, and they die when the method has completed its execution for that invocation. The
final value of a local variable does not carry over to any following invocation of the method.
Note that assignments to a parameter can never affect the associated argument. Consider, for
example:

static void bump(int n) {
n=n+l;

int k = 3;
bump(k):
System.out.print(k);

What value appears on the screen — 3 or 4? The answer is 3, because n is a local variable in
bump(), and an assignment to it cannot have any effect on the value in k.

Return

Procedures terminate and return control to the point of invocation when the final statement in
the procedure is executed. The statement

return;

terminates execution of a procedure prematurely and returns control to the point of invocation
(which will be the command line if return is executed within main()). Do not confuse this
return statement, with the return statement of functions — the return statement for functions has
an accompanying value, as we shall see.

The parameter-read trap

One common mistake among beginners is to think that parameters of methods must be
initialised at the start of the method by reading in values for them from the keyboard. For
example, some beginners might erroneously declare drawLine() as follows:

Static Methods: Procedures © J. M. Morris Page 4.5

static void drawlLine(int n) {
// Draw a line of n *'s. Assume n>=0. WRONGI
n = Console.readInt();, <+—
for (int i=0; ixn; i++) {
System.out.print("*");

Parameters are
initialised at invocation,
not by reading.

}
System.out.printin();

Remember: parameters are given their values at the point of invocation.

Static Methods: Procedures © J. M. Morris Page 4.6

