
Static Methods: Functions © J. M. Morris Page 5.1

Static Methods: Functions

1 Functions

A function does not carry out an action (such as printing or deleting a file) but computes a

value of a particular type. The type of the value returned is called the return type of the function

and is included in the header in place of the void of procedures. For example, the return type

of the following function is double:

static double squareRoot(int x)

The value is returned to the point of invocation by the function when it executes a return

statement. The return statement includes an expression of the return type. For example, if the

return type is int, then the function will contain at least one statement of the form

 return 3*4;

(of course, 3*4 here can be replaced with any integer expression). Every function must have at

least one return statement ending in an expression, but it may have more than one. In other

respects, static functions are declared like static procedures:

 static int max2(int i, int j) {

 // Return the maximum of i and j

 if (i>=j) {

 return i;

 }

 else {

 return j;

 }

 }

Type of result computed Formal parameters

At least one return statement,

and all followed by a value of

type specified in header.

Static Methods: Functions © J. M. Morris Page 5.2

A static function is invoked by using its name (plus arguments in brackets) as an expression of

the type stated in the header:

if (> price3) {

...

}

best = ;

System.out.print(+1);

Important! Note the contrast with procedures: procedures are invoked using an invocation

statement, whereas functions are invoked by the appearance of the name as (or within) an

expression. When a function invocation func(e1), say, is encountered by the system – in an

expression, remember –:it replaces func(e1) in the expression with the value obtained by

executing func(e1) as follows:

1. The parameter in func is initialised with e1.

2. The body of func is executed until a return is encountered.

3. When a return e2 is encountered, the value of e2 is taken as the result of the

invocation.

If you do not understand this, study it further in the textbook.

If a static function name is invoked from outside the class where it is declared, it must be

prefixed with its class name and a period, just as with procedures. For example, the function

round() which we met previously is a static function defined in a class called Math in the Java

library, and so a typical invocation is Math.round(3.14).

The return type of a function can be any type at all. For example, the function endOfFile() in

class Console is a static function whose return type is boolean. If the return type is a character

then we say that the function is “character-valued”; if the return type is boolean then the

function is boolean-valued, and so on.

The result-write trap

As with procedures, a common mistake among beginners is to think that parameters of a

function must be initialised at the start of the function by reading in values for them from the

keyboard. This is not so: parameters acquire their initial values from the corresponding

arguments at each invocation.

max2(price1, price2+20)

Invocation occurs as an expression
max2(x,0)

max2(x,y)

Static Methods: Functions © J. M. Morris Page 5.3

Another error made by beginners is to believe that the result computed by a function must be

printed. This is not so: a function computes a value which it returns it to the caller:

 static int max2(int i, int j) {

 // Return the maximum of i and j

 if (i>=j)

 System.out.print(i);

 else

 System.out.print(j)

 }

Example

To illustrate functions in a complete program, we write a program to read the lengths (in

centimetres, say) of three rods, and determine whether or not the rods can be used to make a

triangle. Three rods form a triangle if the longest length is less than the sum of the other two.

An example of input/output for the program is

Enter three positive lengths: 30 10 15

You don't have a triangle

Another is:

Enter three positive lengths: 3 4 5

You have a triangle

In the program, we employ three functions, one to compute the maximum of three integers,

one to find the sum of the two smallest integers from three given integers, and a boolean-valued

function to determine whether three lines constitute a triangle. The invocations of the functions

are highlighted with boxes. Note that one of the function max() is invoked from two locations.

Of course, we could have written the program using just method main(), but we deliberately

employ functions for illustrative purposes, and in any event the use of auxiliary functions gives

the program a more understandable structure as a collection of small parts.

class Triangle {

 static int max(int i, int j, int k) {

 // Return the maximum of i, j, and k

 if (i>=j && i>=k) // i is the maximum

 return i;

Invoked by sumSmall()

& isTriangle()

WRONG! This is a function,

& so results not printed, but

returned!

Static Methods: Functions © J. M. Morris Page 5.4

 else if (j>=i && j>=k) // j is the maximum

 return j;

 else // k is the maximum

 return k;

 }

 static int sumSmall(int i, int j, int k) {

 // Return the sum of the smaller two among i, j, and k

 return i+j+k- max(i,j,k) ;

 }

 static boolean isTriangle(int i, int j, int k) {

 // Do positives i, j, k constitute a triangle?

 return max(i, j, k) < sumSmall(i, j, k) ; // see note below

 }

 public static void main(String[] args) {

 System.out.print("Enter three positive lengths: ");

 int b = Console.readInt(); int c = Console.readInt(); int d = Console.readInt();

 if (isTriangle(b, c, d))

 System.out.println("You have a triangle");

 else

 System.out.println("You don't have a triangle");

 }

}

Some students might be inclined to write the body of isTriangle() as

 if (max(i, j, k) < sumSmall(i, j, k)) return true;

 else return false;

This is not wrong, but it is needlessly clumsy.

2 Hybrid procedure/functions

Occasionally, a procedure returns a result as well as carrying out an action. The most common

example of such hybrids is when a procedure wishes to indicate to the invoker whether or not it

carried out its action successfully, and does so by returning a boolean. Below is a small

example. It is another version of drawLine() which checks whether the length of the line to be

drawn is not too small or too big.

Invoked by isTriangle()

Invoked by main()

Invoked by command line

Static Methods: Functions © J. M. Morris Page 5.5

static boolean drawLine(int n) { // Draw a line of n *’s

 if (n<0 || n>80)

 return false; // indicate failure

 else { // draw the line

 int i = 0;

 while (i<n) {

 System.out.print("*"); i++;

 }

 System.out.println();

 return true; // indicate success

 }

}

A typical use of this is:

 public static void main(String[] args) {

 int num = Console.readInt();

 boolean success = drawLine(n);

 if (!success) System.out.print(“No can do”);

 }

An invoker who is not interested in the value returned can treat the hybrid just as a normal

procedure:

 drawLine(80);

-- the boolean value returned in this case (which can only be true) is discarded.

Very occasionally, a function may effect a change as well as computing a value. The most

common example of such hybrids are methods such as Console.readString(), Console.readInt()

etc. which read a value from the keyboard and return it, but also display the value entered on

the screen. Again, such hybrids can be used as procedures by ignoring the value returned. For

example, the statement

 Console.readString();

Invocation is an expression....

... or invocation is a statement

Static Methods: Functions © J. M. Morris Page 5.6

carries out the useful role of pausing the program until the user presses the return key – any text

entered on the line is ignored.

