@ Programming with Static Methods

1

Example: Printing a calendar

We tackle a modestly large programming problem, of a size and complexity that requires us to
structure it as a collection of methods. We will write a program which prints a calendar for any
year. We will restrict the year to the range 1900 to 2099, just to simplify the leap year
calculations. The following is an outline of the program:

class Calendar {

static void yearHeader(int y) {
// Display calendar header for year y, such as
/! Calendar 2001

static void monthHeader(int m) {

// Display month header for month M, such as
// February

// Sun Mon Tue Wed Thu Fri Sat

static int firstDay(int y) {
// Calculate day of week on which 1/1/y falls
// Sunday = 0, Monday = 1, efc.

static int daysInMonth(int m, int y) {
// Calculate number of days in month m in year y.
// (Note year is only significant for month 2 (i.e. February))

Programming with Static Methods © J. M. Morris

Page 6.1

static void putMonth(int d, int s) {
// Display the calendar for a month containing s days, where
// the first of the month falls on day d (Sunday = O, etc.).
// E.g. for a month of 28 days beginning on a Thursday:
//
// 1 2 3
// 4 5 6 7 8 9 10
// 11 12 13 14 15 16 17
// 18 19 20 21 22 23 24
// 25 26 27 28

static void putCalendar(int y) {
// Display a calendar for year y, y>=1900.

public static void main(String[] args) {
// Read a year (from 1900) and print its calendar

The complete program is presented below.
class Calendar {

static void yearHeader(int y) {

// Display calendar header for year y
System.out.print(" CALENDAR " +y);
System.out.printin(); System.out.printin();

}

static void monthHeader(int m) {

Programming with Static Methods © J. M. Morris

Page 6.2

// Display month header for month m
String[] month = ; {"February", "March", "April", "May", "June",

"July", "August", "September", "October", "November",

"December"};
System.out.printin(" "+ month[m-1]);
System.out.printin(* Sun Mon Tue Wed Thu Fri Sat");

}

static int firstDay(int y) {
// Day of week on which 1/1/y falls (Sunday = O, etc.).
return (((y-1900)*365 // elapsed days since 1/1/1900
+ (y-1901)/4 // not forgetting leap days
+1 // 1/1/1900 fell on a Monday
V%7); // 7 days in a week

static int daysInMonth(int m, inty) {
// Number of days in month m in year y
if (m==9 [| m==4 || m==6 || m==11) return(30);
else if (m==2){ // catch leap year
if (y%4==0 && y!=1900) return(29);
else return(28);

}

else return(31);

static void putMonth(int d, int s) {
// Display a month of s days, the first of the month
// falling on day d (Sunday = 0O, etc.).
// indent first line of month by d positions
for (int k=1; ke<=d; k++) System.out.print(" ");
int day =d; // day of week
for (int date=1; date<=s; date++) {
System.out.printf(" %2d", date);
day = (day+1)%7;
if (day==0 && date<s) // another line of days to come
System.out.printin();
}
System.out.printin(); System.out.printin();

}

Programming with Static Methods © J. M. Morris

Page 6.3

static void putCalendar(int y) {
// Display a calendar for year vy, y>=1900.
yearHeader(y);
int d = firstDay(y);
for (int m=1; m<=12; m++) {
monthHeader(m);
int s = daysInMonth(m, y);
putMonth(d, s);
d = (d+s)%7;

public static void main(String[] args) {

// Read a year (from 1900) and print its calendar
System.out.print("Enter a year in range 1900..: ");
int y = Console.readInt();
putCalendar(y);

}

2 Static variables

Variables can be declared in a class rather than locally in a method; such variables are said to
be global to the methods in the class (otherwise the variable is local to the method in which it
is declared). For example, variable numCalls below is global to both methods in the class, i.e. it
is accessible from both methods:

class MyClass {
static int numCalls = O; // for number of method invocations

static void p() {
numCalls++; // record another invocation

static void q() {
numCalls++; // record another invocation

Programming with Static Methods © J. M. Morris Page 6.4

public static void main(String[] args) {

o PO? e QO e PO
e Q07 e 90 e PO

System.out.print("Number of invocations = ", numCalls);

Note that numCalls has the attribute static, just as for the methods. Global variables can
also be dynamic (also called “instance variables”), just as for methods, and we will meet these
later.

NOTE: The notion of variables being static or instance does not apply to local variables in
methods, e.g. the following is an error

public static void main(String[] args) {

static int num = O; <«—t BANG! static not meaninaful here

Programming with Static Methods © J. M. Morris Page 6.5

