
Characters & Strings © J. M. Morris Page 7.1

Characters & Strings

1 Review of characters

Characters includes the letters of the alphabet in both upper and lower case, the decimal digits,

punctuation characters, other common and not so common symbols (such as @ or #), and

various control characters (such as the new line character – written \n – which when printed

causes the cursor to move to the start of a new line). The character type in Java is written

char.

Character values are bracketed by single quote marks, as in

 char ch = 'X'; .

The following are some of the more useful operations on characters. They are all boolean-

valued static functions in a class called Character in the Java library. Each takes a character

argument (called ch below) and yields a boolean value as indicated by the name (e.g.

Character.isDigit(ch) yields true if ch is a digit).

Character.isDigit(ch)

Character.isLetter(ch)

Character.isLetterOrDigit(ch)

Character.isLowerCase(ch)

Character.isUpperCase(ch)

Character.isWhitespace(ch)

For example, Character.isLetter('b') yields true, whereas Character.isLetter('1') yields false.

Note that Character.isDigit(1) is incorrect – you must write Character.isDigit('1'). The

following static functions are character-valued:

Character.toLowerCase(ch)

Character.toUpperCase(ch)

Characters & Strings © J. M. Morris Page 7.2

For example, Character.toLowerCase('B') yields 'b', Character.toLowerCase('b') yields 'b', and

Character.toLowerCase('2') yields '2'.

Note that for ch a character variable, Character.toLowerCase(ch) yields a character result

without changing the contents of ch. If ch is the name of a character variable and you really

want to replace the contents of ch with a lower case version, you write an assignment

statement: ch = Character.toLowerCase(ch);.

The following piece of code shows how to read a single character from the keyboard and

determine if it is a letter or not:

 char ch = Console.readChar();

 if (Character.isLetter(ch))

 System.out.print("That’s a letter!");

 else

 System.out.print("That’s not a letter!");

If you need further understanding of the behaviour of the character operations, look them up in

a textbook.

2 Review of strings

Java provides the type String, whose values consist of all strings. A string is a sequence of

characters, whether letters, digits, punctuation marks, etc. In Java, strings are delimited by

double-quote marks, as in "This is a string", but the quote marks are not part of the string and

do not get printed.

Strings occur most commonly as arguments of print() and println(). However, strings are values

in their own right, and can be the subject of operations. The most common operation on strings

is concatenation, denoted by +. For example, execution of

String s = "Fee Fi";

s = s + "Fo Fum";

System.out.print(s);

causes Fee FiFo Fum to be displayed. The concatenation operation also supports

concatenation of single characters; for example, "cat" + 's' yields "cats" (as does "cat" + "s").

Characters & Strings © J. M. Morris Page 7.3

It is important that you understand the distinction between writing variable names surrounded

by quotes, on the one hand, and without quotes on the other hand. The following program

illustrates this; it outputs j = 17

class What {

 public static void main(String[] args) {

 int j = 17;

 System.out.print("j = " + j);

 }

}

-- in "j = " + j the first j appears on the screen literally as the letter j, while the second j

appears on the screen as the contents of the variable j, i.e. 17, and so j = 17 appears at the end.

Java supplies a large collection of string operations. Some of the more important ones are listed

below; note that they are all functions. Many of the operations rely on the fact that each

character in a string has a position, the position of the first character in the string being 0. For

example, the position or index of 'D' in "Dublin" is 0, the index of 'u' is 1, and so on. In the

following table of examples, we presume that variable s is initialised as follows:

 String s = "Dublin";

 Expression Value Explanation

 s.length() 6 number of characters in string s

 s.startsWith("Dub"); true does s begin with "Dub"?

 s.startsWith("dub"); false does s begin with "dub"?

 s.endsWith("in"); true does s end with "in"?

 s.indexOf("bli"); 2 index of first "bli" in s?

 s.indexOf("cat"); -1 index of first "cat" in s (-1 as no occurrence)

 s.substring(2,5); “bli” that part of s indexed from 2 to (but excluding) 5

 s.substring(2); “blin” the tail of s starting from index 2

 s.charAt(2); 'b' the character at index 2 in s

 s.toUpperCase(); “DUBLIN” the upper case equivalent of s

 s.toLowerCase(); “dublin” the lower case equivalent of s

 “ hi there ”.trim() “hi there” “ hi there ” without leading or trailing blanks

Characters & Strings © J. M. Morris Page 7.4

The string preceding the dot in these operations can be any string expression, and not

necessarily a string variable. For example, (s.substring(2,5)).trim() is a valid

string expression. Note that these operations do not change the string – they generate a new

string which can be printed or assigned to a variable. For example, if you want to change all the

lower case letters in a string s to uppercase, write the assignment

 s = s.toUpperCase();

Example

The following program illustrates some string operations. It reads a person’s name in the form

of one or more forenames followed by a surname, possibly with spaces surrounding each word.

It displays the name as upper case surname followed by the initial letter of the first forename.

An example of input/output is

Enter name: Wolfgang Amadeus Mozart

MOZART, W.

The program is

class Names {

 public static void main(String[] args) {

 // Read name and remove leading and trailing spaces

 System.out.print("Enter name: ");

 String name = Console.readString();

 name = name.trim();

 // Locate first letter of surname

 int i = name.length()-1; // at final letter

 while (name.charAt(i) != ' ') {

 i--;

 }

 // Extract the surname (and convert to upper case), & initial

 String surname = (name.substring(i+1)).toUpperCase();

 char initial = name.charAt(0);

 System.out.println(surname + ", " + initial + ".");

 }

}

As an exercise, replace the two assignments to name with a single assignment which both

reads the name and removes the leading and trailing spaces.

Characters & Strings © J. M. Morris Page 7.5

3 Comparing strings

Never use the relational operator == to compare strings for equalityu. Instead of == use the

Boolean-valued function equals() (or equalsIgnoreCase() when the case of the characters in the

arguments is not significant). For example, to compare string variables s and t for equality write

one of

 s.equals(t)

 t.equals(s)

-- do not write s==t or t==s.

Strings can be compared according to their dictionary order, but you may not use the relational

operators (<, <=, et.) for this. Instead use the integer-valued function compareTo(), as in

 s.compareTo(t)

which yields a negative integer if s comes before t in the usual lexicographic (i.e. dictionary or

alphabetic) ordering, a positive integer if t comes before s, and zero if s and t are equal. If you

are not familiar with this, look it up in your textbook.

Banana Skin: equals() and compareTo() are used to compare strings, but characters are

compared using ==, < , <= etc.

Example

The following program illustrates string comparisons. It reads two names (forename &

surname, surrounded by arbitrary blanks), and displays that name which comes first in

phonebook ordering. Phonebook ordering is alphabetically by surnames, with ties being

resolved by alphabetic ordering of forenames. An example of i/o is:

Enter first name: Albert Einstein

Enter second name: Stephen Hawking

Albert Einstein

class LeastName {

 public static void main(String[] args) {

 // Read first name

 System.out.print("Enter first name: ");

 String forename1 = Console.readToken();

Characters & Strings © J. M. Morris Page 7.6

 String surname1 = Console.readToken();

 // Read second name

 System.out.print("Enter second name: ");

 String forename2 = Console.readToken();

 String surname2 = Console.readToken();

 // Compare names alphabetically

 if (surname1.compareTo(surname2)<0 ||

 (surname1.equals(surname2) && forename1.compareTo(forename2)<0))

 System.out.println(forename1 + " " + surname1);

 else System.out.println(forename2 + " " + surname2);

 }

}

