Classes and Objects

1 Classes as compound types

If we want to represent a sum of money in a program we can use an integer. If we want to represent
a person’s name, we can use a string. But if we want to represent a point on a grid, we need a pair
of numbers:

10

9

8

7

6 (2.0,4:5)

5 pd
.A/

4

3

2 1
(0,0) - the origin

1 =

o &

0O 1 2 3 4 5 6 7 8 9 10

Java does not supply a type corresponding to pairs of items, but it gives us a mechanism for
making such types. A class is in essence a mechanism for introducing a new type composed from
simpler types. For example, a type to represent points will have two components, each one a
number. The upper point in the diagram above has components 2.0 — the x-component, and 4.5 —
the y-component. Java supplies us with so-called “elementary” types, namely the integers,
booleans, characters, and reals. All other types have to be introduced by the programmer by
assembling elementary types, and that is done using classes.

To introduce a type for representing points, we write a class such as

Classes & Objects © J. M. Morris Page 8.1



class Point {
double x, y;

This text defines a new type called Point. Note that it introduces a type — it does not introduce
any variables, notwithstanding the presence of declaration statements for x and y. It should be
viewed as a template from which points will be created, as we shall see. The names x and y are
chosen arbitrarily — we could equally well have called them u and v, say. The class definition as
written above is placed either before or after the class containing main(). The name Point has the
same status as int or String — it is the name of a type. The statement

Point p;

introduces p as a variable of type Point. (For reasons that will become clear later, it is more
accurate to say that p is of type “reference to Point”, but that is a minor subtlety.) “Point p;” is a
declaration statement just like “int n;”, and can be written wherever “int n;” might be written.
Initially variable p is given the special value null by default; it may be pictured as:

p | null

In general, the values belonging to a type introduced using the class mechanism are called
“objects”. More particularly, the members of class Point are called “Point objects”, or “instances oOf
Point”.

To manipulate points in a program we create Point objects, one for each point we want to handle.
Every object is made of components as specified in the class definition. For example, objects of
type Point will have two components, each of them being a variable of type double. The
constituent variables of a class are called its “instance variables”; for example, x and y are the
instance variables of class Point. They are called instance variables because they are created each
time we create an instance of the class. They may also be called dynamic variables.

The expression “new Point()” creates an object of type Point. It usually occurs in an assignment
statement:
p = new Point();

Classes & Objects © J. M. Morris Page 8.2



This does two things (remember that — two things):

0] It creates a new Point object.
(i) It places a reference to it in p.

The effect can be visualised thus:

P :X
vl ]

The component parts of the point just created are referred to as p.x and p.y, respectively.

Every time you create an instance of a class, you create new versions of the instance variables. For
each object created, its instance variables can be treated as regular variables that can be assigned
values. For example, the effect of the assignments

p.x=20: py=45;

can be pictured as

y 4.5

We say that variable p is of type reference to Point because, as the picture indicates, variable p
does not contain the point (2.0, 4.5) but a reference to it. In contrast, when an integer variable k,
say, is assigned the value 3, its state may be depicted as follows:

-- observe that variable k literally contains 3.

The following trivial program illustrates the use of class Point. It calculates the distance between a
point (chosen arbitrarily as (2.0, 4.5)) and the origin (i.e. the point (0,0)). The program uses a
standard mathematical formula for distance from the origin; if you are not familiar with it just take
it on trust (the function Math.sqrt(x) yields the square root of x).

Classes & Objects © J. M. Morris Page 8.3



class Point {
double x, y;

class PointDemo {

public static void main(String args[] ) {

Point p; // declare p
p = new Point(); // create a Point object, accessed via p
p.x=2.0; py=45; // fill in the component values

double dist = Math.sqrt(p.x*p.x+ p.y*p.y); // distance of p from origin
System.out.printIn(" The point is " + dist + " from the origin.");

When a program is comprised of several classes, as above, place them in a single file give the file
the same name the class which contains the main() you want to be run when the program is
executed. The above program, for example, should be placed in a file called PointDemo. java.

Remember that the names we choose for the name of a class and its constituent components are
arbitrary; we only need to stick throughout the program with whatever names we’ve chosen. For
example, the above program might well have been written as

class PointClass {
double u, v;

class PointDemo {

public static void main(String args[]) {

PointClass p; // declare p
p = new PointClass (); // create a Point object, accessed via p
p.u=20; pv=45; // fill in the component values

double dist = Math.sqrt(p.u*p.u+ p.v*p.v); // distance of p from origin
System.out.printin("The point is " + dist + " from the origin.");

Classes & Objects © J. M. Morris Page 8.4



Classes are fundamental in Java, and it is important that you get off to a good start. Make sure you
understand what is meant by:

(i)
(i)
(iii)
(iv)
(v)

The class definition (the first three lines of the program above);

Declaring a variable for holding (a reference to) an instance of the class (e.g. Point p);
Creating an instance of the class (e.g. new Point ());

Placing a reference to it in a variable (e.g. the assignmentinp = new Point ());
Initialising the instance variables (e.g. p.x = 2.0; p.y = 4.5;).

The above program is trivial, and can be easily written without introducing a Point class. Classes
are not terribly useful until we combine them with methods, which we shall do shortly. For the
moment, we are concentrating on the technical rudiments. Here are some further examples of
defining classes. A class for dates:

class Date {

int day, month, year;

A class for students:

class Student {

String name;
String[] courses;
boolean isMale;

int age;

}

A class for CDs:

class €D {
String artist;
String title;
String[] trackTitles;
int yearOfRelease;

}

It is convention among Java programmers to start class names with an upper case letter, even
though this is not required by the language rules.

Classes & Objects © J. M. Morris Page 8.5



