
Classes & Objects © J. M. Morris Page 9.1

Classes: common errors

1 The big traps

The no-object trap

A declaration of a variable of a class type does not create an instance of the class. For example, the

declaration

 Point p;

only introduces a variable of type reference to Point, but it does not create a Point object. Hence

the code

 Point p; p.x = 1.2;

is erroneous because p.x does not exist at that point (p has the initial default value of null).

Remember that variable p does not refer to an object until it is assigned a reference to an object.

This is typically done by executing p = new Point() which leaves p referring to a newly

created object.

The needless-object trap

Sometimes, we needlessly create an object when a variable of a class type is declared, as illustrated

by the following example. Suppose we have two point objects referenced by variables p and q:

 Point p = new Point(); p.x = 1.2; p.y = ...;

 Point q = new Point(); q.x = ...; q.y = ...;

Suppose that later in the program, we want to interchange p and q; for this we need a temporary

variable of type Point. It is tempting to write:

 Point t = new Point(); // silly!

Classes & Objects © J. M. Morris Page 9.2

 t = p; p = q; q = t;

Although this code will work, it is silly to initialise t by creating a new Point object and placing a

reference to it in t – because in the very next statement we assign p to t, and so the object we

created plays no role at all. Instead t should be introduces as either

 Point t;

or

 Point t = null;

The instance variable trap

The variables in an object are called instance variables (because they belong to an instance of the

class). Whenever you refer to an instance variable, you must indicate the particular object in which

the variable sits. The following code contains errors often made by beginners:

class MyClass {

 int x;

 ...;

}

class MainClass {

 public static void main(String[] args) {

 MyClass p = new MyClass (); // ok

 p.x = 7; // ok

 MyClass.x = 5; // Error!

 x = 3; // Error!

 }

}

It is crucial to get it absolutely clear that instance variables belong to objects, and do not exist

merely by their occurrence in the class definition. Let x be an instance variable declared in class

MyClass: No variables called x are created until the programmer creates an object of type

MyClass, and as many variables x are created as objects of type MyClass. Whenever we refer to

Classes & Objects © J. M. Morris Page 9.3

variable x, we must indicate which x, and we do this by prefixing it with a reference to the object

of which it is a component (as in p.x where p is a variable of type MyClass).

Variables introduced in a class that are not marked static are said to be instance or dynamic

variables; this is rather lazy terminology as strictly speaking these variables exist in objects of the

class rather than the class.

2 Orphans and aliases

An orphan is an object which is no longer accessible to the program because we no longer retain a

reference to it. Orphans arise naturally. The memory they occupy is released for later use by a

component of the Java runtime system called the garbage collector which runs in the background.

We illustrate with a (completely useless) program:

class Triv {

 int x;

}

class Silly {

 public static void main(String[] s) {

 Triv p, q;

p q

p = new Triv(); q = new Triv();
p q

p.x = 2; q.x = 3;
p q

2 3

q.x = p.x + 4;
p q

2 6

p = q;

p q

2 6

q.x = 7;

p q

2 7

System.out.print(p.x); 7 appears on the screen

}

null null

Classes & Objects © J. M. Morris Page 9.4

The assignment p = q above creates an “orphan” (the object containing 2); the memory it occupies

will be released eventually by the garbage collector.

In contrast to orphans (for which we have no access), some objects may have many access paths.

When there is more than one way to access an object, the object is said to be aliased. In the trivial

program above, for example, the object containing 7 can be accessed via variables p or q and so is

aliased. Usually aliasing arises intentionally and presents no problems. However, occasionally it

catches us out as explained below.

The aliasing trap

Recall that integer variables actually contain their integer values, and similarly for reals, chars,

booleans, and floats. All other types of variable contain references to objects (references are also

called “pointers” or “handles”). It is important to understand the distinction between them, because

it affects the way assignment behaves. Consider the following code fragment

 int j, k

 j = 3; k = 5;

 j = k; // integer copied!

 k++;

 System.out.println(j);

Obviously this code displays 5 – the assignment k++ has no effect on the value of j. Now consider

the following which is similar to the above, but involves assignment of objects rather than integers

class Triv {

 int x;

}

....

 Triv j, k;

 j = new Triv(); j.x = 3;

 k = new Triv(); k.x = 5;

 j = k; // reference copied!

 k.x++;

 System.out.print(j.x);

Classes & Objects © J. M. Morris Page 9.5

Surprisingly for some, 6 is output rather than 3. The point to understand is that the assignment

j=k; is effected by copying references, not values, leaving j and k referring to the same object –

see the picture below.

Subsequently, any change to the state of the object accessed via j is concomitantly a change to the

object accessed via k. If you do not want this, then the assignment j = k should be replaced with

code which makes an exact copy of the object referenced by k, and assigns a reference to the new

object to j:

 j = new Triv(); j.x = k.x; // new copy of k’s object created!

Actually, it turns out in practice that making copies of objects is not much needed – copying

references usually suffices. We will see a more systematic way to copy objects later.

3 Strings are immutable objects

It so happens that strings are treated as objects in Java. The String type in Java is a built-in

class, and hence variables of type String contain not an actual string but a reference to a string.

For example, the declaration

 String myString = “cat”;

creates the situation depicted below:

myString

“cat”

 j = k;

3 x j 5 x k

5 x
j

k

k.x++;

6 x
j

k

Classes & Objects © J. M. Morris Page 9.6

Hence, a variable of type String may be assigned the value null.

You never have to worry about inadvertently aliasing strings. This is because strings are

“immutable”, i.e. we can never change the value of a string. Of course, we can write an assignment

such as

 myString = myString + “alogue”;

This does indeed change the string referred to by myString, but the change is effected not by

modifying the original string, but by creating a new string similar to the original one but with

“alogue” appended. The situation can be depicted as follows:

The original string object (containing “cat”) becomes an orphan, which will eventually be

discarded by the garbage collector.

“catalogue”

myString

“cat”

