ﬂ @ Classes: Constructors

1 No-args constructors

For a class, say,

class Point {
double x, y;

the phrase new Point () is an expression which yields a reference to a freshly created object of
type Point. Point () is an example of a “constructor”. Whenever we introduce a class, the
system automatically provides a constructor for it, as we have seen.

The constituent variables of the object are given initial values by the constructor, according to the
standard rules — e.g. integer variables are initialised to 0. For example, the effect of executing
Point p = new Point () can be visualised as:

It is possible to change the default initial values to say, 1,0 and 2.0, respectively, as follows:

class Point {
double x = 1.0; double y = 2.0;

Now the effect of executing Point p = new Point () can be visualised as:

1.0
2.0

Classes: Constructors © J. M. Morris Page 10.1



An alternative (and more general) way to provide specific initial values is by writing your own
constructor. The following example illustrates a programmer-supplied constructor:

class Point {
double x, y;

Point() {
x=10;y=20;

The effect now of executing Point p = new Point () isexactly as in the preceding diagram.

The first line of a constructor — its header — always consists of the name of the class followed by a
pair of brackets (which may contain a parameter list, as we shall see). The body of the constructor
— the part between the chain brackets — may contain almost arbitrary code but it typically consists
of just simple assignments to the instance variables of the class, as above. Be careful not to
confuse a constructor with a method — in particular the header does not contain a return type or
void, and it must have the same name as the class.

The above is an example of a no-args constructor, i.e. one with no parameters/arguments. The no-
args constructor that we used previously is supplied by the system is called is called the default no-
args constructor.

2 Constructors with parameters

Constructors may have parameters, just like methods, as in:

class Point {
double x, y:

Point(double x0, double y0) {
x = x0; y = y0;

Classes: Constructors © J. M. Morris Page 10.2



In this case, we explicitly supply the desired initial values for the instance variables each time we
construct the object, as in

p = hew Point(2.5, 3.14);

The effect of this statement is to construct an object of type Point, initialise its x and y instance
variables to 2.5 and 3.4, respectively, and assign a reference to the object to p. This constructor is
said to be an all-args constructor. Its use is illustrated in the following trivial program:

class Point {
double x, y;

Point(double x0, double yO {
x = x0;y = y0;
}

}

class PointDemo {
public static void main(String args[] ) {
Point p = new Point(2.0,4.5);
double dist = Math.sqrt(p.x*p.x+ p.y*p.y); // distance of p from origin
System.out.printin("The point is " + dist + " from the origin.");

We can write constructors so that some initial values come from parameters in the constructor, and
some come from preset values. We can even supply several constructors for a single class. For

example:

class Point {
double x = 5.0; // default initial value of x components is 5.0

double y;

Point(double y0) {
y =y0; // x initialised to 5.0

}

Point(double x0, double y0) {
x = x0; y = y0;

}

Classes: Constructors © J. M. Morris Page 10.3



class ConstructorsTest {

public static void main(String args[] ) {
Point q, r;
q = hew Point(4.5); // q initialised to (5.0, 4.5)
r = new Point(3.41, 4.5); // r initialised to (3.41, 4.5)

Some additional technical details: If you write more several constructors in a class, they must
differ in the number and types of their parameters. Constructors may invoke methods, whether they
are defined in the same class or not. It is even possible for a constructor to call another constructor
within its class. The called constructor is invoked as though it were a void method (i.e. a
procedure), and the invocation must be the first action in the calling constructor. This facility is not
much used in small programs.

The method/constructor trap

Constructors have some similarities with methods, especially in the way they employ parameters.
But constructors are not methods, and you must not confuse them. There is no return type in the
header, nor any return statements in the body. They must have the same name as the class.

The default constructor trap

If you define your own constructor(s), then the default no-args constructor is no longer made
available. If you really need it you have to write it, as for example in :

class Point {
double x, y:

Point(double x0, double y0) { // all-args constructor
x = x0; y = y0;
}

Point() { } // reinstates the default no-args constructor

Classes: Constructors © J. M. Morris Page 10.4



