
Classes: Constructors © J. M. Morris Page 10.1

Classes: Constructors

1 No-args constructors

For a class, say,

class Point {

 double x, y;

}

the phrase new Point() is an expression which yields a reference to a freshly created object of

type Point. Point() is an example of a “constructor”. Whenever we introduce a class, the

system automatically provides a constructor for it, as we have seen.

The constituent variables of the object are given initial values by the constructor, according to the

standard rules – e.g. integer variables are initialised to 0. For example, the effect of executing

Point p = new Point() can be visualised as:

It is possible to change the default initial values to say, 1,0 and 2.0, respectively, as follows:

class Point {

 double x = 1.0; double y = 2.0;

}

Now the effect of executing Point p = new Point() can be visualised as:

0 x

y
p

0

1.0 x

y
p

2.0

Classes: Constructors © J. M. Morris Page 10.2

An alternative (and more general) way to provide specific initial values is by writing your own

constructor. The following example illustrates a programmer-supplied constructor:

class Point {

 double x, y;

 Point() {

 x = 1.0; y = 2.0;

 }

}

The effect now of executing Point p = new Point() is exactly as in the preceding diagram.

The first line of a constructor – its header – always consists of the name of the class followed by a

pair of brackets (which may contain a parameter list, as we shall see). The body of the constructor

– the part between the chain brackets – may contain almost arbitrary code but it typically consists

of just simple assignments to the instance variables of the class, as above. Be careful not to

confuse a constructor with a method – in particular the header does not contain a return type or

void, and it must have the same name as the class.

The above is an example of a no-args constructor, i.e. one with no parameters/arguments. The no-

args constructor that we used previously is supplied by the system is called is called the default no-

args constructor.

2 Constructors with parameters

Constructors may have parameters, just like methods, as in:

class Point {

 double x, y;

 Point(double x0, double y0) {

 x = x0; y = y0;

 }

}

Classes: Constructors © J. M. Morris Page 10.3

In this case, we explicitly supply the desired initial values for the instance variables each time we

construct the object, as in

 p = new Point(2.5, 3.14);

The effect of this statement is to construct an object of type Point, initialise its x and y instance

variables to 2.5 and 3.4, respectively, and assign a reference to the object to p. This constructor is

said to be an all-args constructor. Its use is illustrated in the following trivial program:

class Point {

 double x, y;

 Point(double x0, double y0 {

 x = x0; y = y0;

 }

}

 class PointDemo {

 public static void main(String args[]) {

 Point p = new Point(2.0,4.5);

 double dist = Math.sqrt(p.x*p.x+ p.y*p.y); // distance of p from origin

 System.out.println("The point is " + dist + " from the origin.");

 }

 }

We can write constructors so that some initial values come from parameters in the constructor, and

some come from preset values. We can even supply several constructors for a single class. For

example:

class Point {

double x = 5.0; // default initial value of x components is 5.0

double y;

 Point(double y0) {

 y = y0; // x initialised to 5.0

 }

 Point(double x0, double y0) {

 x = x0; y = y0;

 }

Classes: Constructors © J. M. Morris Page 10.4

}

class ConstructorsTest {

 public static void main(String args[]) {

 Point q, r;

 q = new Point(4.5); // q initialised to (5.0, 4.5)

 r = new Point(3.41, 4.5); // r initialised to (3.41, 4.5)

 }

}

Some additional technical details: If you write more several constructors in a class, they must

differ in the number and types of their parameters. Constructors may invoke methods, whether they

are defined in the same class or not. It is even possible for a constructor to call another constructor

within its class. The called constructor is invoked as though it were a void method (i.e. a

procedure), and the invocation must be the first action in the calling constructor. This facility is not

much used in small programs.

The method/constructor trap

Constructors have some similarities with methods, especially in the way they employ parameters.

But constructors are not methods, and you must not confuse them. There is no return type in the

header, nor any return statements in the body. They must have the same name as the class.

The default constructor trap

If you define your own constructor(s), then the default no-args constructor is no longer made

available. If you really need it you have to write it, as for example in :

class Point {

 double x, y;

 Point(double x0, double y0) { // all-args constructor

 x = x0; y = y0;

 }

 Point() { } // reinstates the default no-args constructor

}

