
Classes: Instance Methods © J. M. Morris Page 11.1 

Classes: instance methods 

1 Introduction to instance methods 

Methods are either static or instance. Instance methods are also called dynamic or non-static 

methods. They are easily recognised – they don’t have the keyword static in the header. 

Otherwise, they look similar. For example: 

 

class Point { 

 double x, y; 

 

 void putPoint() { // display point 

  System.out.print("(" + x + "," + y + ")"); 

 } 

} 

 

There are two key points to observe in method putPoint above: (i) no static in the header 

which marks it out as  an instance method, and (ii) x and y are referred to without indicating the 

intended object (as in, say, p.x or p.y). Point (ii) illustrates the crucial advantage of instance 

over static methods: instance methods may refer to the instance variables of the class in which 

they are defined without qualification.  

 

To understand what this means, suppose we create an object of type Point, as follows, say: 

 

Point p = new Point();  

p.x = 2.0; p.y = 4.5; 

 

then we can picture the effect as: 



Classes: Instance Methods © J. M. Morris Page 11.2 

 

 

 

 

 

 

 

 

 

 

Every object we create has a copy of each instance method in the class. In contrast, only one copy 

of a static method exists, and it exists from the time the class is loaded at run time. So every 

Point object has a version of putPoint. To emphasise that we really do get a copy of 

putPoint inside each Point object, suppose we created two Point objects: 

 

Point p = new Point(); p.x = 2.0; p.y = 4.5; 

Point q = new Point(); q.x = 7.1; q.y = 9.2; 

 

The situation created is: 

 

 

    

 

 

 

 

 

 

 

Observe that each copy of putPoint differs slightly from the others in that each mention of x 

and y in the body of putPoint is locked onto the x and the y in the object where the copy lives. 

This is indicated by the wavy lines in the diagram above.   

 

Like instance variables, an instance method only comes to life when an object of the class is 

created. Indeed, there will be precisely as many versions of putPoint in existence as there are 

objects of type Point. And each version will be slightly different, because each is locked onto the 

instance variables in its own object. 

2.0 
x 

4.5 
y 

p 

{ System.out.print ( 
 

     "(" +x+ "," + y+ ")" 

       ); 

} 

putPoint 

7.1 
x 

9.2 
y 

q 

{ System.out.print ( 
 

       "(" +x+ "," + y+ ")" 

       ); 

} 

putPoint 

2.0 
x 

4.5 
y 

p 

{ System.out.print ( 
 

     "(" +x+ "," + y+ ")" 

       ); 

} 

putPoint 



Classes: Instance Methods © J. M. Morris Page 11.3 

 

When we invoke an instance method we must indicate which copy we are invoking – by prefixing 

the method with an object reference. In the example above, we might invoke  p.putPoint() – 

which prints (2.0,4.5) – or q.putPoint() which prints (7.1,9.2).  

2 Elementary examples 

The following trivial program displays (2.0,4.5): 

 

class Point { 

 double x, y; // cooordinates 

 

 Point(double xval, double yval) { // constructor  

  x = xval; y = yval; 

 } 

  

 void putPoint() { // display point 

  System.out.print("(" + x + "," + y + ")"); 

 } 

 

} 

 

class PointDemo2 { 

 public static void main(String args[] ) { 

 Point p = new Point(2.0,4.5);  

  p.putPoint(); 

 }  

} 

 

Could we have made putPoint a static method in the above program, by including static in 

its header? No we couldn’t, because putPoint uses the freedom to refer to instance variables 

nakedly (in writing x rather than p.x, say), and that can only happen in instance methods. 

 

It is important to recognise that the point printed by putPoint is not supplied as an argument; 

rather, it is accessed directly within the object to which this version of putPoint belongs. Once 

you decide which version of putPoint to invoke, you have also committed to the point that will 

be printed. 



Classes: Instance Methods © J. M. Morris Page 11.4 

 

We can make the program a little more general by reading the coordinates of each new point. This 

version has a second instance method. 

 

class Point { 

 double x, y; // cooordinates 

 

 void getPoint() {  // read coordinates 

  x = Console.readDouble(); y =  Console.readDouble(); 

 } 

  

 void putPoint() { // display point 

  System.out.print("(" + x + "," + y + ")"); 

 } 

} 

 

class PointDemo3 { 

 public static void main(String args[] ) { 

 Point p = new Point();  

 p.getPoint(); 

  p.putPoint(); 

 }  

} 

 

Note that when we invoke an instance method such as getPoint to initialise an object with 

values entered at the keyboard, we have to create the object before invocation – otherwise the 

necessary instance method doesn’t exist.  

 

The local variable trap 

When writing an instance method, be careful not to hide the instance variables by introducing local 

variables of the same name. The following coding of getPoint illustrates this. 

 

 void getPoint() {  // read coordinates 

  double x = Console.readDouble(); //WRONG 

  double y =  Console.readDouble(); // WRONG 

 } 

 



Classes: Instance Methods © J. M. Morris Page 11.5 

It is seriously wrong to have declared x and y above by prefixing their use with double. The 

effect is to introduce two additional x and y variables local to getpoint where the point 

coordinates read from the keyboard will be placed, rather than placing them in the instance 

variables where they should be. 

 

The instance method trap 

Remember that instance methods belong to objects, and so if no objects of the class have been 

created, then there are no copies of the method. You cannot use an instance method without having 

first created at least one instance of the class where it is defined. Hence the following code 

contains errors: 

 

class MyClass { 

 int x; 

 void  inc() { x = x+1;} 

 ...; 

} 

 

class MyClassTest { 

 public static void main(String[] args) { 

  MyClass t = new MyClass();  

  .... 

  inc();    // Error – must prefix inc() with an object 

  MyClass.inc();  // Error –inc() prefixed with class name 

  t.inc();   // ok 

  ..... 

 } 

} 

3 Invoking instance methods locally 

Just as instance methods may refer nakedly to instance variables in the same object, so they may 

also refer nakedly to methods in the same object. Whereas outside a class (class Point, say)  we 

invoke method p.putPoint(), say, where p identifies a Point object, code inside class 

Point can invoke putPoint() – in this case, the local version of putDate() is invoked, i.e. 

the one that resides in the same object. This is illustrated below. Of course, putPoint() in some 

other object can be invoked but then the other object must be identified in the usual way.  



Classes: Instance Methods © J. M. Morris Page 11.6 

4 Object-oriented programming 

The example that follows illustrates the object-oriented programming style of programming. This 

entails identifying the important concepts in the problem statement, and incorporating them into 

the solution as types encapsulated as classes.  

 

We write a program to read a date – typified by 23 3 2006 , say – and print it in a form typified by 

23rd March 2006. We identify the notion of “date” as central and so begin by writing a 

corresponding type called Date. 

 

class Date { 
     

   int day, month, year;  
     

    void getDate() {  

          day = Console.readInt();   

 month = Console.readInt();  

 year = Console.readInt(); 

    } 
     

    String monthName() {  

         String[] name = ; {"February", "March", "April", "May", "June",  

    "July", "August", "September", "October", "November",  

    "December"}; 

  return name[month-1]; 

    } 
     

    void putDate() {  // in form e.g. 23rd March 2006 

          System.out.print(day);  

 if (day%10==1 && day!=11) System.out.print("st");  

 else if (day%10==2 && day!=12)) System.out.print("nd");  

 else if (day%10==3 && day!=13) System.out.print("rd");   

 else System.out.print("th"); 

 System.out.print(monthName() + "  " + year);  // Note monthName()! 

    } 

} 
     

class PrintDate { 

    public static void main(String[] args) { 

          Date d = new Date(); 



Classes: Instance Methods © J. M. Morris Page 11.7 

 d.getDate();  

 d.putDate(); 

    } 

} 

 

Note the invocation of monthName() in putDate() – it invokes that version of 

monthName() in the same object. After d.getDate() has completed, and supposing the user 

enters 23 3 2006, we have the situation depicted below. When d.putDate() is invoked, it in 

turn invokes monthName(). The use of monthName within putDate does not need a prefix to 

identify it as long as our intention is to invoke the version of monthName that resides within the 

same object.   

 

Remember that when we invoke an instance method such as getDate to initialise an object with 

values entered at the keyboard, we have to create the object before invocation – otherwise the 

necessary instance method doesn’t exist. Observe also that getDate and putDate have no 

parameters – all the variables they need reside in the object to which they belong; this is often the 

case with instance methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23 day 

month 

d 

{ System.out.print(...); 

    day = Console.readInt(); 

     ...... 

} 

   
 

      x * x   +  y  * y 

       ) 

} 

getDate 

3 

2006 year 

{  ..... 

    if (month==1) ... 

     ...... 

} 

   
 

      x * x   +  y  * y 

       ) 

} 

putDate 
{  ..... 

    System.out.print(day); 

     ...... monthName() .... 

} 

   
 

      x * x   +  y  * y 

       ) 

} 

monthName 


