
Classes: Class Parameters © J. M. Morris Page 12.1

Classes: Class Parameters

1 Class parameters

Class Point (say) may be freely used within the definition of class Point. It is especially

common for instance methods in a class Point (say) to have parameters of type Point. For

example:

class Point {

 double x, y; // cooordinates

 void getPoint() {

 x = Console.readDouble();

 y = Console.readDouble();

 }

 double distance(Point p) { // distance of this point from point p

 return (Math.sqrt((x - p.x) * (x - p.x) + (y - p.y) * (y - p.y)));

 }

}

Observe that distance takes a parameter of type Point. In the body of distance, x

unadorned with a prefix denotes that x in the same object as the current incarnation of

distance, and p.x denotes that x in the object referenced by parameter p. If p1 and p2 are

each variables of type Point, then the distance between them is obtained by invoking either

p1.distance(p2) or p2.distance(p1). The following example assumes Point as

defined above.

Classes: Class Parameters © J. M. Morris Page 12.2

class PointsDist {

 public static void main(String[] args) {

 Point p1 = new Point();

 Point p2 = new Point();

 p1.getPoint();

 p2.getPoint();

 System.out.print("The distance between them is " + p1.distance(p2));

 }

}

We might equally well have written p2.distance(p1) in place of p1.distance(p2).

2 The redundant parameter trap

Remember that an instance method belongs to an object, and has free access to the object’s

instance variables. It is very important to grasp the significance of this: every instance method has

free access to the instance variables of the object to which it belongs. Many beginners forget this

and introduce a redundant object parameter. For example, they may try to write a method

distance2 in place of distance as follows:

 double distance2(Point p, Point q) { // distance between two points, but BAD!

 return (Math.sqrt((p.x - q.x) * (p.x - q.x) + (p.y - q.y) * (p.y -q.y)));

 }

Method distance2 above determines the distance between two points, but it is poor coding

aninstance method (although technically correct) in that both points are passed as parameters.

distance2 is an instance method and so has free access to a point, i.e. to the x and y variables

in the object in which it resides. Therefore it only needs access to one other point, and that is

passed as a single parameter. Method distance written earlier exhibits the correct object-

oriented style of coding.

In general, instance methods tend to have one less parameter than you might think at first, because

every invocation of an instance method has free access to everything in the object to which it

belongs.

Classes: Class Parameters © J. M. Morris Page 12.3

3 Describing the effect of an instance method

Comments in instance methods often refer to the object to which it belongs as “me” or “I” or “this

point”, “this employee”, “this date” etc., or “the point”, “the employee”, “the date” etc. For

example, the behaviour of distance(Point p) may be described by any of the following

comments

 // distance of this point from point P

 // distance from point P

 // my distance from point P

 // how far am I from point P

 // distance of the point from point P

4 Class result types

An instance method may return a value of a class type, even of the same class to which the method

belongs. For example, an instance method in class Point (say) may return (a reference to) an

object of type Point. Consider the following example which is a program to read a point and

compute its reflection in the x-axis (the reflection of (x,y) in the x-axis is (x,-y)).

class Point {

 double x, y; // coordinates

 void getPoint() { // read coordinates from keyboard

 x = Console.readDouble();

 y = Console.readDouble();

 }

 void putPoint() { // display point

 System.out.print("("+ x + "," + y + ")");

 }

 Point xReflect() { // create and return x-reflection of this point

 Point pt = new Point();

 pt.x = x; pt.y = -y;

 return pt;

Classes: Class Parameters © J. M. Morris Page 12.4

 }

}

In this case we have designed xReflect to create and return a new Point object, rather than

changing the current one. In other words, xReflect is a function, not a procedure – the point

object is not changed, but rather a new one is created. (In another design, we might have been

required to write a similar method as a procedure which changes the object to represent the x-

reflection of the original point.)

We might have included an all-args constructor for class Point above:

 Point(double x0, double y0) {

 x = x0; y = y0;

 }

Had we done so, we could use it to write an alternative and very succinct version of xReflect:

 Point xReflect() { // create and return x-reflection of this point

 return new Point(x, -y);

 }

An example of a program which uses class point is:

class PointsDist{

 public static void main(String[] args) {

 Point p = new Point();

 p.getPoint();

 Point r = p.xReflect();

 System.out.print("The x-reflection of ");

 p.putPoint();

 System.out.print(" is ");

 r.putPoint();

 }

}

Classes: Class Parameters © J. M. Morris Page 12.5

Note that we wrote Point r = p.xReflect; and not Point r = new Point(); r =

p.xReflect;. While the latter is not incorrect, it needlessly creates a Point object that is

immediately discarded. The code can be written more compactly by removing the declaration and

assignment to r, and replacing r.putPoint() with (p.xReflect()).putPoint().

5 Example: Date of following day

We write a program to read a date and print the following day’s date. A typical input/output is:

Enter day month year: 30 4 2011

The day after 30/4/2011 is 1/5/2011

class Date {

 int day; int month; int year;

 Date(int day0, int month0, int year0) {

 day = day0; month = month0; year = year0;

 }

 Date(){}

 void getDate() {

 System.out.print("Enter day month year: ");

 day = Console.readInt();

 month = Console.readInt();

 year = Console.readInt();

 }

 void putDate() {

 System.out.print(day + "/" + month + "/" + year);

 }

Classes: Class Parameters © J. M. Morris Page 12.6

 int daysInMonth() { // Number of days in month

 if (month==9 || month==4 || month==6 || month==11) return(30);

 else if (month==2) {

 if (year%4==0 && year!=1900) return(29);

 else return(28);

 }

 else return(31);

 }

 Date nextDay() { // day after this day

 if (day<daysInMonth()) return new Date(day+1, month, year);

 else if (month<12) return new Date(1, month+1, year);

 else return new Date(1, 1, year+1);

 }

}

class Tomorrow {

 public static void main(String[] args) {

 Date d1 = new Date(); d1.getDate();

 System.out.print("The day after "); d1.putDate();

 System.out.print(" is ");

 Date d2 = d1.nextDay(); d2.putDate();

 }

}

The final line in the preceding method may be written more succinctly as

 (d1.nextDay()).putDate();

Classes: Class Parameters © J. M. Morris Page 12.7

6 Example: least name

Let us write a program to read a list of persons’ names, one name per line of input. Each name

consists of a forename followed by a space followed by a surname. The program should display the

name which comes first in the usual phone-book ordering of names, output as surname followed

by forename separated by a comma. For example, the input

Charles Darwin

Marie Curie

Neils Bohr

Albert Einstein

should give rise to the output

Bohr, Neils

The input has at least one name. The program follows. Note that lte takes just a single Name

parameter although it compares two names.

class Name { // The name of a person

 String forename, surname; // first and second names

 void get() { // Read name from keyboard

 forename = Console.readToken(); // forename is one word

 surname = Console.readString(); // surname is rest of line

 }

 void put() { // Write name in form "Smith, Fred"

 System.out.println(surname + ", " + forename);

 }

 boolean lte(Name s) { // My name precedes or equals s?

 return(surname.compareTo(s.surname)<0 ||

 (surname.equals(s.surname) && forename.compareTo(s.forename)<=0));

 }

Classes: Class Parameters © J. M. Morris Page 12.8

}

class LeastName {

 public static void main(String[] args) {

 Name least = new Name();

 least.get(); // least name so far

 while(!Console.endOfFile()) {

 Name tempName = new Name(); // Big banaskin dodged – see below

 tempName.get();

 if (tempName.lte(least))

 least = tempName;

 }

 least.put();

 }

}

In the above program, we only retain access to (at most) two objects, one accessed via least and

the other accessed via tempName, and yet we create an object each time a name is read. Hence the

program creates lots of orphans, but this is not a problem.

Big banana skin! You may be tempted to avoid the creation of a name object for each name read.

If so, you may effect this by placing the declaration Name tempName = new Name();

alongside the declaration of least (removing it from the body of the loop). Can you see why this

will fail?

7 Mixing static and instance methods

It is common for classes to include both instance and static methods. Remember that static

methods exist as soon as the class is loaded – they are not included in objects. A method should be

static if it has no good reason to access instance variables or instance methods nakedly. Of course,

a correct static method would not be made wrong by changing it to an instance method (by just

omitting static from its header), but that would be needlessly expensive computationally. It

would mean that a copy of the method would be created in every object of the class, even though

the extra power available to instance methods is not used.

Classes: Class Parameters © J. M. Morris Page 12.9

Consider the following class regarding dates. The class includes an instance method putDate

which prints the date in a form typified by 03-10-06 (day followed by month followed by year,

each occupying two digits).

class Date {

 int day; int month; int year;

 Date(int d, int m, int y) {

 day = d; month = m; year = y;

 }

 static String dig2(int n) { // n as 2-digit string, 0<=n<100

 return("" + n/10 + n%10);

 }

 void putDate() {

 System.out.println(dig2(day) + "-" + dig2(month) + "-" + dig2(year%100));

 }

}

putDate uses static method dig2 to compute a 2-character string representation of the

rightmost digits of its argument. dig2 makes no reference to any instance variables in the class

and so it would be both misleading and computationally expensive to write it as an instance

method. Remember that static methods exist as soon as the program is loaded – they are not

included in objects. An execution of Date d = new Date(3,10,2006), for instance,

creates:

3 day

month

d

10

2006 year

{

 }

putDate

Classes: Class Parameters © J. M. Morris Page 12.10

– note that the object does not contain dig2.

A static method may be invoked by an instance method. When both are defined in the same class,

they are invoked by using just the simple name of the static method (as in the example above). If

the static method is defined in a different class, then the name of the static method must be

prefixed with the name of the class in which it is defined, as in Character.isDigit(c).

Static methods may call instance methods. They must always identify the object in which the

instance method resides using the usual prefix notation.

