ﬂ 3 Classes: Access Control

1 Access control

Each method, constructor, and variable within a class, whether static or dynamic, may be marked
as either public or private. If neither is stated, then the default is public (but Java requires an
explicit writing of public in the declaration of main(), and in some other situations which we
will mention when we meet them). These keywords do not bring any new power, in the sense that
they do not enable us to write programs that we couldn’t write without them. Their role is stylistic.

Entities in a class that are not marked private are public by default. Entities marked as private
cannot be seen outside the class, and so it is not possible for other classes to refer to them directly.
If we need to change a class method, say — perhaps we have discovered a more efficient
implementation — the change will likely impact on other modules, which will in turn need to be
updated, and so on. This can be very time-consuming, especially the time lost in re-testing
everything. However, if the method happened to be private, we can be certain that no other classes
are affected.

It is standard programming practice to make all the instance variables in a class private. Methods
should be marked private if they are written solely to help us to write another method in the same
class — in other words, if they were not part of the formal requirements for the class. For example,
recall the first example of Date we wrote earlier; it is reproduced in outline below with its
variables and methods marked as private where appropriate:

class Date {
private int day; private int month; private int year;

void getDate() {

Classes: Access Control © J. M. Morris Page 13.1

private String monthName() { // not intended to be invoked from outside

}
void putDate() { // in form 23rd March 2006

The instance variables day, month, and year are marked private as is usually the case. In
addition, method monthName is marked private because it was introduced only during the coding
process to help us write putDate.

It is not easy for beginners to see the value of public and private. Indeed, if we replace all
occurrences of private in a program with public, then the program will compute the same
result. However, if you earn your living updating other peoples programs, you will pray that they
have employed private variables and methods as much as possible. Professional programmers
always privatise when possible. Regular changes in large working programs are the norm, and it is
easier to change programs where the internal details of classes are kept hidden by making them
private.

2 The formal rules

The basic rule is that private entities cannot be accessed outside the class in which they are
defined. For example:

class Pair {
int x; // x is public by default
private inty; // yis private

private void methl(Pair p) {

int tempx = p.x: // okay
int tempy = p.y: // okay (we're still inside the class where y is defined)

Classes: Access Control © J. M. Morris Page 13.2

class UsePair {
public static void main(String args[]) {
Pair r = new Pair ();
Pair q = new Pair();
rx=1; // okay as x public
ry=2; // ILLEGAL as y private and we're outside the class
r.methl(p), // ILLEGAL as methl private and we're outside the class

Remember that the attributes public and private only constrain code outside the class in
which they occur — note class here, not object. If a class contains a private variable x, say, then an
instance method in the class can refer not only to its own x, but to the corresponding x in every
other object of the class. For example, in class Pair above

int fempy = p.y;

is allowed in instance method meth1 even though it is referring to a private variable y in another
object — as long as the object is of the same class the reference is okay.

The private/public trap

Only variables declared at class level may be qualified as private or public. Local variables (i.e.
those declared inside methods) are never so marked:

class Duration {
private int counter = O; // okay

public static void main(String[] args) {
private int length=0; // WRONG!

Classes: Access Control © J. M. Morris Page 13.3

