
Classes: Access Control © J. M. Morris Page 13.1 

Classes: Access Control 

1 Access control 

Each method, constructor, and variable within a class, whether static or dynamic, may be marked 

as either public or private. If neither is stated, then the default is public (but Java requires an 

explicit writing of public in the declaration of main(), and in some other situations which we 

will mention when we meet them).  These keywords do not bring any new power, in the sense that 

they do not enable us to write programs that we couldn’t write without them. Their role is stylistic. 

 

Entities in a class that are not marked private are public by default. Entities marked as private 

cannot be seen outside the class, and so it is not possible for other classes to refer to them directly. 

If we need to change a class method, say – perhaps we have discovered a more efficient 

implementation – the change will likely impact on other modules, which will in turn need to be 

updated, and so on. This can be very time-consuming, especially the time lost in re-testing 

everything. However, if the method happened to be private, we can be certain that no other classes 

are affected.  

 

It is standard programming practice to make all the instance variables in a class private. Methods 

should be marked private if they are written solely to help us to write another method in the same 

class – in other words, if they were not part of the formal requirements for the class. For example, 

recall the first example of Date we wrote earlier; it is reproduced in outline below with its 

variables and methods marked as private where appropriate: 

 

class Date { 
     

         private int day; private int month; private int year;  
     

    void getDate() {  

          ... 

    } 
     



Classes: Access Control © J. M. Morris Page 13.2 

    private String monthName() { // not intended to be invoked from outside 

 ... 

    } 
     

    void putDate() {  // in form 23rd March 2006 

          ...       

    } 
     

} 

 

The instance variables day, month, and year are marked private as is usually the case. In 

addition, method monthName is marked private because it was introduced only during the coding 

process to help us write putDate. 

  

It is not easy for beginners to see the value of public and private. Indeed, if we replace all 

occurrences of private in a program with public, then the program will compute the same 

result. However, if you earn your living updating other peoples programs, you will pray that they 

have employed private variables and methods as much as possible. Professional programmers 

always privatise when possible. Regular changes in large working programs are the norm, and it is 

easier to change programs where the internal details of classes are kept hidden by making them 

private.  

2 The formal rules 

The basic rule is that private entities cannot be accessed outside the class in which they are 

defined. For example: 

 

class Pair { 

    int x;   // x is public by default 

    private int y;  //  y is private 

 

    private void meth1(Pair p) { 

        .....  

       int tempx = p.x; // okay  

       int tempy = p.y; // okay (we’re still inside the class where y is defined)  

        .....  

    } 

    ..... 



Classes: Access Control © J. M. Morris Page 13.3 

} 

 

class UsePair { 

    public static void main(String args[] ) { 

        Pair r = new Pair ();  

        Pair q = new Pair(); 

        r.x = 1;   // okay as x public 

        r.y = 2;   // ILLEGAL as y private and we’re outside the class 

        r.meth1(p); // ILLEGAL as meth1 private and we’re outside the class 

    } 

} 

 

Remember that the attributes public and private only constrain code outside the class in 

which they occur – note class here, not object. If a class contains a private variable x, say, then an 

instance method in the class can refer not only to its own x, but to the corresponding x in every 

other object of the class. For example, in class Pair above 

 

 int tempy = p.y;  

 

is allowed in instance method meth1 even though it is referring to a private variable y in another 

object – as long as the object is of the same class the reference is okay. 

 

The private/public trap 

Only variables declared at class level may be qualified as private or public. Local variables (i.e. 

those declared inside methods) are never so marked: 

 

class Duration { 

 

    private int counter = 0; // okay 

 

    public static void main(String[] args) { 

  private int length = 0; // WRONG!  

  ..... 

    } 

} 

 


