

Arrays © J. M. Morris Page 14.1

Arrays

1 Index mapping

You are expected already to have a good understanding of arrays. We examine some array

techniques in more detail, beginning with index mapping. Index mapping is a technique for

compact array code by employing rich expressions in indices. Suppose, say, we want read a text

and print the frequencies of word-lengths in the text. An example of output is:

1-letter words: 3

2-letter words: 5

3-letter words: 9

4-letter words: 4

6-letter words: 1

class WordCount {

 public static void main(String[] args) {

 int[] count = new int[20]; // word lengths up to 19, say

 // zero counts

 int i = 0;

 while (i<count.length) {

 count[i] = 0; i++;

 }

 // Read words & keep track of frequencies

 while (! Console.endOfFile()) {

 String word = Console.readToken();

 count[word.length()]++;

 }

 // Print result

Arrays © J. M. Morris Page 14.2

 i = 1;

 while (i<count.length) {

 if (count[i]>0)

 System.out.println(i + "-letter words: " + count[i]);

 i++;

 }

 }

}

Each word read is mapped to the index of the appropriate component of count[] – component i of

count[] records the number of words of length i (component 0 is not used). Each word is read into

string variable word, and hence the word’s length is word.length(). If this is 4, say, then we must

increment word[4]. Note that the length operator for arrays has no brackets, unlike that for arrays.

2 Accessing arrays using for-each loops

For-each loops provide a convenient way to access all the values in an array. For example,

suppose a program contains the integer array myArray; the values in myArray are printed using

the following for-each loop

 for (int k: myArray)

 System.out.println(k);

We could have also expressed this a for-loop as follows, although it is a little more cumbersome:

 for (int i=0; i<myArray.length; i++)

 System.out.println(myArray[i]);

The for-loop is in turn just a shorthand for the following while-loop

 int i = 0;

 while (i<myArray.length) {

 System.out.println(myArray[i]);

 i++;

 }

Arrays © J. M. Morris Page 14.3

While loops are completely general, for-loops are more restrictive but a little more convenient

when, and for-each loops are again more convenient but are even more limited in their

applicability. For example, it is not possible to use a for-each loop to assign a value to every

element of an array. None of the loops in the word count program above can be written using a for-

each loop.

3 Arrays as objects

Java treats arrays as objects. Hence an array variable does not literally contain an array, but a

reference to one. For example, the declaration below can be envisaged as shown:

 int[] b = {3, 5, 6, 4, 5};

Suppose we have if addition to the declaration of b above, array c declared as follows:

 int[] c = {5, 7, 9};

Then the assignment

 b = c;

is effected by copying the reference to the array, as illustrated.

4 Arrays as parameters and return types

Arrays may occur as parameters of methods, or as return types, as in the following example to

make a copy of an array.

 static int[] copy(int[] b) {

 int[] r = new int[b.length];

 for (int i=0; i<r.length; i++)

 r[i] = b[i];

 return r;

 }

 int[] c = {5, 7, 9};

b
 5 7 9

c

b 3 5 6 4 5

 0 1 2 3 4

 5 7 9 c c

Arrays © J. M. Morris Page 14.4

 int[] d = copy(c); // note: no "= new int[...]" needed here

The array parameter in the following example is assigned to in the method body. As an exercise

trace the execution of the program; state the output produced, justify it, and then test your answer

(you may be surprised at first!)

 static void incrementAll(int[] b) {

 for (int i=0; i<b.length; i++)

 b[i]++;

 }

 int[] c = {5, 7, 9};

 incrementAll(c);

 System.out.println(c[0] + " " + c[1] + " " + c[2]);

5 Command line arguments

You can pass arguments to a program from the command line. The arguments are formed into an

array of strings and passed to the program. For example, if we issue the command

 java MyProgram Bill Smith 15 3 1978

where class MyProgram has method public static void main(String[] args) the

following array is made available in main()

Note that every item is passed as a string, even the integers (you can convert them back to type int

using Integer.parseInt()). We illustrate with a program which sums a list of integers supplied at the

command line. The following is a typical invocations of the program:

java AddInts 7 13 -4 10 13

class AddInts {

 public static void main(String[] args) {

 int sum = 0;

 “Bill” “Smith” “15” “3” “1978”

 0 1 2 3 4

args

Arrays © J. M. Morris Page 14.5

 for (String s: args) {

 sum = sum + Integer.parseInt(s);

 }

 System.out.println(sum);

 }

}

Warning: remember that command line arguments are not read from the keyboard by the executing

program – they are supplied in the command line when the program is invoked.

