

Multidimensional Arrays © J. M. Morris Page 16.1

Multidimensional Arrays

1 Multidimensional arrays

The arrays we have seen so far are “1-dimensional”, by which is meant that a single index suffices

to identify any component of the array. A 2-dimensional array can be visualised as a grid; for

example, a 2-dimensional integer array b with 4 columns and 3 rows can be pictured as

2 7 1 9

3 6 4 5

6 3 2 7

Each row and column is indexed from 0, and each component cell is identified by supplying two

indices as indicated. We say that an array with m rows and n columns is an “mn” array; for

example, the array above is 34. A 2-dimensional array is also called a matrix. Arrays may have

more than two dimensions.

In Java, a 34 integer array b is created by the following declaration:

int[][] b = new int[3][4];

Initialisation of the array can be included in the definition, as typified by

int[][] b = {{3,4,6,2}, {6,1,2,1}, {9,2,4,3}};

2 Example: magic squares

b[1][3]

0 1 2 3

0

1

2

Multidimensional Arrays © J. M. Morris Page 16.2

We write a program to generate a magic square, i.e. a square grid of distinct numbers whose rows,

columns, and diagonals all have the same sum. The following is a magic square of order 3, i.e. a

33 magic square using the numbers 1 to 9, incl. (verify that each row, column, and diagonal adds

up to 15):

8 1 6

3 5 7

4 9 2

When the numbers in the magic square are 1, 2, 3, ... we call it a normal magic square. We confine

our attention to normal magic squares. The following is an algorithm to generate a (normal) magic

square of order n, provided n is odd. Deposit 1, 2, 3, ..., n2 in the cells of an nn grid proceeding as

follows. The first cell to receive a value is the middle of the top row. The successor cell in each

case will be the cell immediately to the north-east (see how 6 follows 5 above). However, if the

north-east cell does not exist, we wrap around the borders (see how 2 follows 1, and how 3 follows

2). After each group of n numbers have been deposited, the successor cell is immediately to the

south rather than the north-east (see how 4 is to the south of 3 above). Test your understanding of

this on the magic square above. For a further check, generate a magic square of order 5. You

should get the following:

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

The program should print the number in each cell “right-justified”, i.e. each column of numbers is

aligned on the right-hand side. The magic squares program is given below. The command

java MagicSquare 5

will generate a magic square of order 5 (note that the size of the square is supplied as a command

line argument).

class MagicSquare {

 public static void main(String[] args) {

Multidimensional Arrays © J. M. Morris Page 16.3

 // Generate a magic square of order args[0], which

 // must be an odd positive integer

 int n = Integer.parseInt(args[0]);

 int[][] ms = new int[n][n]; // for the magic square

 int num = 1; // next number to be deposited

 int j = 0; int k = n/2; // next cell to be filled is ms[j][k]

 while (num<=n*n) {

 ms[j][k] = num; // fill in cell

 if (num%n==0) { // after each n steps go south

 j++;

 }

 else { // otherwise go north-east, with wrap around if necc.

 j--; if (j<0) j = n-1;

 k++; if (k==n) k = 0;

 }

 num++;

 }

 // print magic square

 for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 // print ms[j,k] right-justified in field of width 5

 System.out.printf("%5d", ms[j][k]);

 }

 System.out.println();

 }

 }

}

3 Arrays of arrays

We usually envisage a 2-dimensional array as a grid, as we have done above, and that picture will

is sufficiently accurate to program with. The true picture is slightly more complex, however. A 2-

dimensional array is actually implemented as an array of arrays: each row is a 1-dimsensional

array. For example, given

 int[][] b = new int[3][4]

Multidimensional Arrays © J. M. Morris Page 16.4

b[1] is a 1-dimensional array of integers with four elements b[1][0], b[1][1], b[1][2], and b[1][3].

It is not a requirement that each row array have the same number of elements, e.g.

 int[][] b = {{3,4,6,2}, {6,1}, {9,4,3}};

It is possible to supply b[1], say, whenever a 1-dimensional array is expected, as in:

 int[][] b = {{3,4,6,2}, {6,1}, {9,4,3}};

int[] c = b[1];

We don’t often use these additional possibilities.

