ﬂ@ Multidimensional Arrays

1 Multidimensional arrays

The arrays we have seen so far are “1-dimensional”, by which is meant that a single index suffices
to identify any component of the array. A 2-dimensional array can be visualised as a grid; for
example, a 2-dimensional integer array b with 4 columns and 3 rows can be pictured as

0 1 2 3
0|2 119
113 |6 |4 |5 <+—Db[1][3]
216 2 |7

Each row and column is indexed from 0, and each component cell is identified by supplying two
indices as indicated. We say that an array with m rows and n columns is an “mxn” array; for
example, the array above is 3x4. A 2-dimensional array is also called a matrix. Arrays may have
more than two dimensions.
In Java, a 3x4 integer array b is created by the following declaration:

int[][] b = new int[3][4];

Initialisation of the array can be included in the definition, as typified by

int[][] b = {{3,4,6,2}, {6,1,2,1}, {9,2,4,3}};

2 Example: magic squares

Multidimensional Arrays © J. M. Morris Page 16.1

We write a program to generate a magic square, i.e. a square grid of distinct numbers whose rows,
columns, and diagonals all have the same sum. The following is a magic square of order 3, i.e. a
3x3 magic square using the numbers 1 to 9, incl. (verify that each row, column, and diagonal adds
up to 15):

When the numbers in the magic square are 1, 2, 3, ... we call it a normal magic square. We confine
our attention to normal magic squares. The following is an algorithm to generate a (normal) magic
square of order n, provided n is odd. Deposit 1, 2, 3, ..., n2 in the cells of an nxn grid proceeding as
follows. The first cell to receive a value is the middle of the top row. The successor cell in each
case will be the cell immediately to the north-east (see how 6 follows 5 above). However, if the
north-east cell does not exist, we wrap around the borders (see how 2 follows 1, and how 3 follows
2). After each group of n numbers have been deposited, the successor cell is immediately to the
south rather than the north-east (see how 4 is to the south of 3 above). Test your understanding of
this on the magic square above. For a further check, generate a magic square of order 5. You
should get the following:

17| 24 1 8] 15
23 5 71 14 16

4 6| 13| 20| 22
10} 12| 19| 21 3
11| 18| 25 2 9

The program should print the number in each cell “right-justified”, i.e. each column of numbers is
aligned on the right-hand side. The magic squares program is given below. The command

java MagicSquare 5

will generate a magic square of order 5 (note that the size of the square is supplied as a command
line argument).

class MagicSquare {
public static void main(String[] args) {

Multidimensional Arrays © J. M. Morris Page 16.2

// Generate a magic square of order args[0], which
// must be an odd positive integer
int n = Integer.parseInt(args[O]):
int[J[]1 ms = new int[n][n]; // for the magic square
int num = 1; // next number to be deposited
int j = 0; int k =n/2; // next cell to be filled is ms[j][K]
while (num<=n*n) {
ms[jI[k] = num; // fill in cell
if (num%n==0) { // after each n steps go south
j++;
}
else { // otherwise go north-east, with wrap around if necc.
j if (j<0) j = n-L;
k++; if (k==n) k = O;
}
num++;
}
// print magic square
for (j=0: j<n; j++) {
for (k=0; ken; k++) {
// print ms[j k] right-justified in field of width 5
System.out.printf("%5d", ms[j1[k]):;
}
System.out.printin();
}

3 Arrays of arrays

We usually envisage a 2-dimensional array as a grid, as we have done above, and that picture will
is sufficiently accurate to program with. The true picture is slightly more complex, however. A 2-
dimensional array is actually implemented as an array of arrays: each row is a 1-dimsensional
array. For example, given

int[][] b = new int[3][4]

Multidimensional Arrays © J. M. Morris Page 16.3

b[1] is a 1-dimensional array of integers with four elements b[1][0], b[1][1], b[1][2], and b[1][3].
It is not a requirement that each row array have the same number of elements, e.g.

int[]1[] b = {{3,4,6,2}, {6,1}, {9,4,3}};
It is possible to supply b[1], say, whenever a 1-dimensional array is expected, as in:

int[][] b = {{3,4,6,2}, {6,1}, {9,4,3}};
int[] ¢ = b[1l];

We don’t often use these additional possibilities.

Multidimensional Arrays © J. M. Morris Page 16.4

