
Nested Objects © J. M. Morris Page 17.1

Nested Objects

1 Nested objects

Classes may contain instance variables of a class type, and so an object of such a class will contain

(references to) other objects within it. The inner objects are said to be “nested” in the outer objects.

Consider the following example:

class Date {

 private int day, month, year;

 void getDate() {

 day = Console.readInt(); month = Console.readInt();

year = Console.readInt();

 }

}

class Person {

 private String name;

 private Date dob; // Nested object!

 void getPerson() {

 name = Console.readToken();

 dob = new Date(); dob.getDate();

 }

}

class MyProg {

 public static void main(String[] args) {

Nested Objects © J. M. Morris Page 17.2

 Person per = new Person();

 per.getPerson();

 }

}

Observe in class Person that dob is an instance variable of a class type – type Date. The effect of

executing Person per = new Person() can be visualised as:

Note that as yet dob does not reference a Date object. The Date object is created by the

invocation per.get() (take a look at the code and notice it is created just before invoking

dob.get()), after which the situation is (assuming the input consists of Bill 15 9 1994):

2 Nested objects traps

Not creating the nested object

You must always ensure in the case of a nested object, that the object exists before you operate on

it. For example, many beginners forget to include the statement dob = new Date() in method

“Bill” name

 dob

per

void getPerson() {

 name = ...

 ...

}

15 day

9 month

void getDate() {

 day =

 ...

}

1994 year

 name

 dob

per

void gePerson() {

 name = ...

 ...

}

Nested Objects © J. M. Morris Page 17.3

getPerson() above. A useful strategy to avoid this pitfall is to code the creation of an object

into the variable’s declaration:

class Person {

 private String name;

 private Date dob = new Date(); // Note default creation!

 void getPerson() {

 name = Console.readToken();

dob.getDate(); // No Date creation needed

 }

}

Now, each time an instance of Person is created, a new instance of Date is also created, just as we

want. For example, the declaration

 Person per = new Person();

gives rise to:

Very important: The failure-to-delegate trap

This trap is extremely important to understand and avoid! Although falling into it may still result

in a working program, the program is likely to be very badly structured.

A class should encapsulate everything about whatever concept or notion it is intended to represent.

Whenever we want to carry out some action pertaining to the concept, we should do so by

invoking a method in the class. It takes beginners some time to grasp this. Take a look at method

 name

 dob

per

void getPerson() {

 ...

}

 day

 month

void getDate() {

 ...

}

 year

Nested Objects © J. M. Morris Page 17.4

getPerson above, which reads a name and a date. Observe in particular that it does not read the

date directly, but delegates it to the method getDate in class Date, as it should. There is no

other acceptable way to code getPerson.

Some beginners who fail to delegate when appropriate might wrongly code getPerson as

follows:

 void getPerson() { // This is bad!

 name = Console.readToken();

 day = Console.readInt();

 month = Console.readInt();

year = Console.readInt();

 }

This is seriously wrong. To begin with, the compiler will legitimately complain that you do not

have access to variables called day, month, and year because they are instance variables of

another class (class Date, whereas the code here is in class Person). So the programmer may

make a second attempt:

 void getPerson() { // This is bad!

 name = Console.readToken();

 dob = new Date();

 dob.day = Console.readInt();

 dob.month = Console.readInt();

dob.year = Console.readInt();

 }

This is still seriously wrong! The compiler will complain that you are accessing private variables

in another class (class Date, whereas the code here is in class Person), which you may not do.

Heaping error upon error, the programmer makes a third version, this time by deleting the attribute

private from the day, month, and year variables in Date. This time the compiler no longer

complains, and the program works in so far as it delivers the correct output. But the program

remains seriously wrong stylistically!

The style is bad because it builds details of dates into class Person. If subsequently it was

decided to handle dates differently, not only would class Date have to be amended but also class

Nested Objects © J. M. Morris Page 17.5

Person. For example, if it was decided to implement the program in a country where dates are

specified in the order month-day-year, the original design only requires that class Date be

amended. No change in class Person is needed, and that is how it should be.

The correct way to write getPerson is as we wrote it originally – any other way of writing is

either technically or stylistically wrong.

You will be protected from this trap if you mark instance variables as private, and keep them that

way. If the compiler objects that you are accessing private variables illegally, don’t fix the problem

by removing private. The problem is that you are failing to delegate, and that’s what you should

fix up.

 Never deal with compiler errors by removing private attributes

3 Example: dating

We write a simple dating program to read a list of peoples’ details, and find a compatible partner

for the first person on the list, the candidates being the persons in the rest of the list. We also count

the total number of compatible partners for him/her. A typical input looks like

Bill Smith M 15 7 1992

Mike Murphy M 21 6 1994

Mary Murphy F 13 9 1991

John Doe M 27 3 1988

Jane Kinnear F 10 6 1990

Sean Ryan M 17 12 1989

Jean Holland F 8 6 1990

Fred Stone M 23 8 1988

Each person’s details are entered on a single line, and consist of forename, surname, the letter M or

F to indicate male or female, respectively, and date of birth (year, month, and day). Each item on a

line is separated from the following one by a single space.

A partner is compatible if he/she is of the opposite sex and is no more than three years younger or

older. The output generated for the above input might be

 3 compatible partners for Bill Smith aged 20 including Jean Holland aged 22

Nested Objects © J. M. Morris Page 17.6

If there is more than one compatible partner, any one will do. It is guaranteed that there are at least

two persons in the input.

For an object-oriented design, we first identify the important concepts in the problem statement.

Two present themselves: the notion of dates, and the notion of persons. The appropriate data for a

date is day, month, and year, and these will be represented by instance variables. The operations on

dates that would seem to be useful are

(i) Read a date.

(ii) Compute the age in years of a date.

(iii) Compute the difference in years of age of two dates.

To compute ages, we need to know today’s date. Java provides the means to discover this using

library class GregorianCalendar as explained below (access to the class requires importing

java.util.*; as shown).

import java.util.*;

class Date {

 private int day, month, year;

 void get() { // read a date

 day = Console.readInt(); month = Console.readInt();

 year = Console.readInt();

 }

 private int age() { // whole years elapsed since date

 GregorianCalendar c = new GregorianCalendar();

 int thisDay = c.get(GregorianCalendar.DATE);

 int thisMonth = c.get(GregorianCalendar.MONTH)+1;

 int thisYear = c.get(GregorianCalendar.YEAR);

 int years = thisYear-year;

 if (thisMonth<month || (thisMonth==month && thisDay<day))

 years--;

 return years;

Nested Objects © J. M. Morris Page 17.7

 }

 int difference(Date d) { // absolute age difference with d

 int n = age()-d.age();

 if (n<0) n = -n;

 return n;

 }

}

Note that GregorianCalendar numbers the months from 0 to 11 – hence the “+1” in the assignment

to thisMonth.

The data we need to represent a person is name, sex, and date of birth, and so we will have

instance variables corresponding to each of these. Observe that the date of birth will be a nested

object. The appropriate operations on persons would appear to be the following:

(i) Read a person’s details.

(ii) Display a person’s details in the form “Bill Smith aged 27”.

(iii) Determine whether a given person is compatible with this person.

class Person {

 private String name;

 private boolean isMale;

 private Date dob = new Date(); // date of birth

 void get() { // read line of person data

 name = Console.readToken();

 name = name + " " + Console.readToken();

 char sex = Console.readChar();

 isMale = sex=='M' || sex=='m';

 dob.get();

 }

 boolean isCompatible(Person p) { // is p of opposite sex & close in age?

 return (isMale!=p.isMale && dob.difference(p.dob)<=3);

 }

Nested Objects © J. M. Morris Page 17.8

 void put() {

 System.out.print(name + " aged " + dob.age());

 }

}

Class Person is typical of a class containing an instance variable of a class type. Study it carefully.

Note that a Person object does not include the code to read the person’s date of birth, but delegates

the job to the relevant Date object. The main class is:

class Dating {

 public static void main(String[] args) {

 Person subject = new Person(); // subject person

 subject.get();

 Person partner = null; // the partner

 int count = 0; // number of compatible partners

 while (!Console.endOfFile()) {

 Person p = new Person(); // candidate

 p.get();

 if (p.isCompatible(subject)) {

 partner = p; count++;

 }

 }

 System.out.print(count + " compatible partners for ");

 subject.put();

 if (count>0) {

 System.out.print(" including ");

 partner.put();

 }

 }

}

