
Structuring with classes © J. M. Morris Page 19.1

Structuring with classes

1 Example: student register

We illustrate program design on a larger scale, including the use of nested objects and arrays of

objects. The purpose of the example is to illustarte the identification and design of classes.

We want to make a program that makes a set of course registers for students attending a certain

university. Input comes from the standard input (usually the keyboard) in the form of one line per

student. Each line contains (in order) student number, first name, second name, and three

subjects which the student is taking. Subjects are drawn from biology, chemistry, computing,

maths, physics, and stats. A typical input looks like

986987 Bill Smith maths stats computing

567245 Jane Kelly stats maths biology

965428 Fred Blogs biology stats maths

609128 Mary Wallace biology maths computing

754926 Carol Coutts maths stats computing

687753 Michael Moulds maths stats biology

297635 Pat Murphy maths stats computing

987636 Fred Flintstone maths stats biology

639373 Sonia Dee maths stats biology

Output is, for each subject with at least one student, a sorted list of the students taking that

subject. Each list is sorted according to the usual phone-book ordering. A typical output looks

like

 SUBJECT: biology

Blogs, Fred 965428

Dee, Sonia 639373

Flinstone, Fred 987636

Kelly, Jane 567245

Moulds, Michael 687753

Wallace, Mary 609128

 SUBJECT: computing

Coutts, Carol 754926

Murphy, Pat 297635

Smith, Bill 986987

Structuring with classes © J. M. Morris Page 19.2

Wallace, Mary 609128

 SUBJECT: maths

Blogs, Fred 965428

Coutts, Carol 754926

Dee, Sonia 639373

Flinstone, Fred 987636

Kelly, Jane 567245

Moulds, Michael 687753

Murphy, Pat 297635

Smith, Bill 986987

Wallace, Mary 609128

 SUBJECT: stats

Blogs, Fred 965428

Coutts, Carol 754926

Dee, Sonia 639373

Flinstone, Fred 987636

Kelly, Jane 567245

Moulds, Michael 687753

Murphy, Pat 297635

Smith, Bill 986987

To start, we identify the important concepts in the problem domain, such as

 Student number Person’s name Subject Sets of subjects

 Student Student register Class roll

We can speculate how we might represent them, as follows:

Student number

A string is sufficient here, as there are sufficient operations on strings for the purpose -- reading

and writing is about all that is needed. Not worth a class.

Person’s name

A pair of strings suffice, one for the forename and one for the surname. (If we were not interested

in sorting names, probably a single string would have sufficed.) Operations include reading,

writing, comparison etc. Worth a class.

Subject

A string is sufficient to represent a subject. The only operation is probably that of reading. Not

worth a class.

Structuring with classes © J. M. Morris Page 19.3

Set of subjects

Each student studies a set of subjects, which we can implement as an array of subjects.

Operations include reading a set of three subjects, and testing whether a particular subject is

included in the set. Introduce a class.

Student

A student is represented by a student number (string), a name, and a subject set, and so these will

become instance variables. Operations include reading, writing, and comparison (of student

names).

Student register

A student register is a database of all the students. We can implement it as an array of students.

Operations include reading, sorting by name, et al. Introduce a class. Important: it commonly

happens that we introduce a class to represent an individual item (here, a student), and a separate

class to represent a collection of them (here, the student register); trying to put these notions in

the same class doesn’t work.

Class roll

A class roll is a list of the students taking a particular subject. There are no operations on a class

roll other than to generate it from a student register, and so it will probably be convenient to do

so by providing a method in the student register class.

The important components we have identified as being relevant to modeling the problem domain

have a hierarchical relationship that can be depicted as follows :

first name

(string)

student no.

(string)

second name

(string)

subject

(string)

person’s name

set of subjects

student

student register

array

array

Structuring with classes © J. M. Morris Page 19.4

We present each class in turn, highlighting some pertinent points in each. As always in these

large examples, the details are not as important as the architecture.

class PersonName { // The name of a person

 private String first, second; // first and second names

 void get() { // Read name from standard input

 first = Console.readToken(); second = Console.readToken();

 }

 void put() { // Write name in form "Smith, Fred" to length 25

 String name = second + ", " + first;

 System.out.printf("%-25s", name);

 }

 boolean lte(PersonName s) { // My name precedes s.name?

 return(second.compareTo(s.second)<0 ||

 (second.equals(s.second) && first.compareTo(s.first)<=0));

 }

 boolean equals(PersonName s) { // My name equals s.name?

 return(first.equals(s.first) && second.equals(s.second));

 }

}

Class PersonName contains nothing new that needs explanation.

class SubjectSet { // Set of subjects

 private final int numSubjects = 3;

 private String[] subjects = new String[numSubjects]; // The set

 void get() { // Read set from keyboard.

 for (int i=0; i<numSubjects; i++) {

 subjects[i] = Console.readToken();

Structuring with classes © J. M. Morris Page 19.5

 }

 }

 boolean contains(String s) { // Is s a member of the set?

 int i = 0;

 while (i<numSubjects && !subjects[i].equals(s)) i++;

 return i<numSubjects;

 }

 public final static String[] subjectTitles =

 {"biology", "chemistry", "computing", "maths", "physics", "stats"};

 public final static int numTitles = subjectTitles.length;

}

Observe the use of constant numSubjects: if the specification changes so that students take, say,

four subjects, then only this constant needs to be changed and nothing else.

We have declared variables subjectTitles and numTitles to be static because we only need one

version of each, no matter how many instances of the SubjectSet are created. Actually, the set of

all possible subjects might deserve embodiment in its own class, but we have chosen to introduce

it as a globally accessible array, parked for convenience within class SubjectSet.

Student numbers is another example of a concept that arguably merits its own class, but one

which pragmatically we can live without. If the problem specification made more of student

numbers (for example by insisting they have some special format which we should check for)

then we might consider it worthwhile to make a class for them.

class Student { // A student

 private String studentNum; // Student number

 private PersonName name = new PersonName(); // name

 private SubjectSet courses = new SubjectSet(); // Subjects being studied

 void get() {// Read from keyboard.

 studentNum = Console.readToken(); name.get(); courses.get();

 }

 void put() {// Display student name and number

Structuring with classes © J. M. Morris Page 19.6

 name.put();

 System.out.println(studentNum);

 }

 boolean lte(Student s) { // Do I precede s in phonebook order?

 return (name.lte(s.name) ||

 (name.equals(s.name) && studentNum.compareTo(s.studentNum) <=0));

 }

 boolean isTaking(String s) { // Am I taking subject s?

 return(courses.contains(s));

 }

}

Method isTaking() does no useful work other than passing the call to another component in the

hierarchy.

class StudentRegister { // Register of students

 private final static int maxNumStudents= 1000;

 private Student[] register = new Student[maxNumStudents];

 private int numStudents = 0; // number of significant items in register

 void get() { // Read register of students, and sort

 while (!Console.endOfFile()) {

 register[numStudents] = new Student();

 register[numStudents].get();

 numStudents++;

 }

 sort();

 }

 private void sort() { // sort register

 // Sort register[0..numStudents-1]

 int j = 0;

 while (j<numStudents) {

 int min = j; int i = j+1;

 while (i<numStudents) {

Structuring with classes © J. M. Morris Page 19.7

 if (register[i].lte(register[min])) min = i;

 i++;

 }

 Student temp = register[j];

 register[j] = register[min]; register[min] = temp;

 j++;

 }

 }

 private void putHeader(String s) { // Put header for subject s

 System.out.println(); System.out.println();

 System.out.println(" SUBJECT: " + s);

 System.out.println();

 }

 void put(String s) { // Display roll for subject s

 int total = 0; // Number of students taking this subject

 for (int i=0; i<numStudents; i++) {

 if (register[i].isTaking(s)) {

 if (total==0) putHeader(s);

 register[i].put();

 total++;

 }

 }

 }

}

It is attractive in this case to sort the list of students immediately after it is input.

class ClassRolls {

 public static void main (String[] args) {

 StudentRegister register = new StudentRegister();

 register.get();

 for (int i=0; i<SubjectSet.numTitles; i++)

 register.put(SubjectSet.subjectTitles[i]);

 }

}

Structuring with classes © J. M. Morris Page 19.8

Changes

A good test of the architecture of a program is to ask a series of questions along the lines “If the

customer asked for this change, or this addition, or this generalisation, how many classes would I

have to inspect, how many would I have to change, and how small would the changes be?”. It is

probably a bad sign if an intuitively small change in the specification leads to changes in many

classes, or even to re-structuring the design. For the program above, consider the implications of

small changes in the specification:

(a) Class rolls to be in order of student number.

(b) Names to be displayed in form “Bill Smith”.

(c) The nationality of each student included in the input, and also in the output.

(d) Allow the number of subjects each student takes to vary.

(e) Do not assume that the possible subjects are known in advance; instead they are to be

deduced from the student data.

We leave it as an exercise to show that these changes are kept fairly local to the relevant classes.

