
Exceptions © J. M. Morris 20.1

Exceptions

1 Handling exceptions

A program will sometimes inadvertently ask the machine to do something which it cannot

reasonably do, such as dividing by zero, or attempting to access a non-existent array

component, or attempting to create a file when there is no more room on the disk. Such

potentially fatal errors are called exceptions. When an exception arises, Java usually applies a

default mechanism which typically prints out some information about the exception and aborts

the program. For example, the following program generates the output shown:

class DefaultExceptionHandling {

 public static void main(String[] args) {

 int x = 5/0; /Oh, Oh!

 System.out.println("You won't see this!");

 }

}

Exception in thread "main" java.lang.ArithmeticException: / by zero

 at DefaultExceptionHandling.main(DefaultExceptionHandling.java:3)

The output is printed by the Java run-time system when it encounters the attempted division by

zero in the first statement in main(). It then aborts the program and so the message "You

won't see this!" never appears. The first line of the output states that an arithmetic

exception occurred, and describes the particular problem as an attempted division by zero. The

20.2 Java Programming

second line states that the exception occurred in method main() of class

DefaultExceptionHandling, and (in brackets) that the offending statement occurs in

line 3 of the file called DefaultExceptionHandling.java.

Aborting the program at the first sign of trouble is often needlessly drastic. For example, if a

disk is full it might be sensible to invite the user to delete some unwanted files. Fortunately,

Java provides a mechanism whereby the programmer can specify what should happen when an

exception arises. Indeed, for some types of exceptions, most typically those associated with file

handling, Java virtually requires that the programmer includes code to handle the exception. A

piece of code that handles an exception is called an exception handler. To handle an exception

that may arise in a particular piece of code, you enclose the code in what is called a try-block,

and follow this immediately with the exception-handling code wrapped up in what is called a

catch-block. These blocks occur together and are known collectively as a try-catch block. The

syntax of a try-catch block is:

try {

 ... code that may give rise to an exception ...

}

catch (Exception e) {

 ... code for handling exceptions ...

}

The words try and catch are keywords of the language. Exception is the name of a pre-

defined class in Java and e is a variable of type Exception (the name e is freely chosen). For

example, the following program includes an exception handler for an attempted division by

zero (we explain its operation shortly):

class ExceptionHandling {

 public static void main(String[] args) {

 try {

 int x = 5/0; // Oh, Oh!

 System.out.println("You won't see this!");

 }

 catch (Exception e) {

 System.out.println("An arithmetic error occurred!");

 }

 System.out.println("Bye Bye!");

 }

}

(The program may be rejected by some compilers because they are smart enough to recognise

5/0 as rubbish. In that case, the zero divisor can be disguised by introducing an integer

variable k and replacing 5/0 with 5/(k-k).) When the program is run it generates the

following output:

Exceptions 20.3

An arithmetic error occurred!

Bye Bye!

When an exception occurs in a try-block, any remaining code in the try-block is abandoned. For

example, the above program does not display the message "You won’t see this!" because

the statement that precedes it generates an exception by attempting to divide by zero. As soon

as that happens, the catch-block is executed, and in this case displays a simple message. A try-

catch block is a statement, no different in status from a while- or an if-statement – after it has

completed, execution continues at the statement that follows (in the example above this is the

statement which displays the message "Bye Bye!"). If no exception arises in the try-block, the

code in the catch-block is not executed, and execution continues with the statement following

the try-catch block.

When an exception occurs, the system creates an object of type Exception which

encapsulates information about the source of the problem. A reference to the object is assigned

to the variable e declared at the entrance to the catch-block. The Exception class has two

methods of interest:

String getMessage()

void printStackTrace()

e.getMessage() returns a short string describing the problem that gave rise to e, while

e.printStackTrace() prints more detailed information. For example, if the statement

system.out.println("An arithmetic error occurred!") in the catch-block

above is replaced with e.printStackTrace(), the program generates the following

output:

java.lang.ArithmeticException: / by zero

 at ExceptionHandling.main(ExceptionHandling.java:5)

Bye Bye!

Although the code in the try- and catch-blocks above is quite simple, in general it can be as

complex as you like. If the code in a try-block invokes a method, any exception arising in the

method is treated as though it arose in the try-block. For example, the program below results in

the message "Exception in zeroDiv!" (and no other) being displayed.

class ExceptionInMethod {

 static void zeroDiv() {

 System.out.println(5/0); // Oh, Oh!

 System.out.println("You won't see this!");

 }

 public static void main(String[] args) {

 try {

 zeroDiv(); // an exception will be generated

 System.out.println("You won't see this!");

20.4 Java Programming

 }

 catch (Exception e) {

 System.out.println("Exception in zeroDiv!");

 }

 }

}

To be precise, we should have said that any uncaught exception arising in a method called from

within a try-block is treated as though it arose in the try-block. A method may well provide its

own handler, and if so that will take precedence.

Instead of saying that a piece of code generates or gives rise to an exception, we sometimes say

the code throws or raises an exception. A piece of code which provides a handler for an

exception is said to catch or trap the exception.

Avoid exceptions!

A potential error can be handled by testing in advance and avoiding the problem, or by letting it

happen and catching the exception. Above we catered for a possible zero-divide by exception

handling. We might alternatively have tested in advance with an if-statement:

if (y!=0) x = x/y;

else System.out.println(“Attempted zero-divide.”);

Whenever you have the choice, test for possible problems in advance and handle them before

they happen. Exceptions are clumsy and expensive coding devices and should only be used

when there is no alternative, primarily when the programming language requires their use. Our

interest in them is motivated primarily as a preparation for studying files where their use is

mandatory.

2 Exception types

Exceptions are categorised into several types of which the most important are IOException

and RuntimeException. Exceptions of type IOException are more informally called

I/O exceptions. They arise when an input/output operation fails, such as an attempt to write to a

USB flash drive which is already full. Exceptions of type RuntimeException are more

informally called run-time exceptions. They arise because of a failure of the program to handle

data correctly, such as attempting to divide by zero. An understanding of I/O exceptions is

important because Java requires the programmer to handle all I/O exceptions that can arise, and

that means that most code that engages in input/output will be in a try-block. Run-time

exceptions, however, are of minor importance and knowledge of them is of little significance

other than in understanding error messages displayed by the system when your program fails.

I/O exceptions and run-time exceptions are further categorised as depicted below:

Exceptions 20.5

The two important types of I/O exception are:

FileNotFoundException A file-not-found exception, caused by an

attempt to access a file that cannot be located

by the system.

EOFException An end-of-file exception, caused by an attempt

to read more data from a file than it contains

(EOF stands for end of file).

We will learn more about these later. There are I/O exceptions that do not belong to any

particular sub-type of IOException. The meaning of the various run-time exception types is

as follows:

ArithmeticException An arithmetic exception, caused by an attempt

to perform an illegal arithmetic operation such

as an attempted division by zero.

IndexOutOfBoundsException An index out-of-bounds exception which is

comprised of the two types that follow.

ArrayIndexOutOfBoundsException An array index out-of-bounds exception,

caused by an attempt to access a non-existent

array element, as in b[-1].

StringIndexOutOfBoundsException A string index out-of-bounds exception,

Exception

 IOException

 FileNotFoundException

 EOFException

 RuntimeException

 ArithmeticException

 NoSuchElementException

 NullPointerException

 IndexOutOfBoundsException

 ArrayIndexOutOfBoundsException

 StringIndexOutOfBoundsException

 ClassCastException

 IllegalArgumentException

 NumberFormatException

20.6 Java Programming

caused by an attempt to access a non-existent

string element, as in "Hi!".charAt(-1).

NullPointerException A null pointer exception, caused by an attempt

to reference an object via a reference variable

that contains null, as in Point p;

p.x=0;

ClassCastException A class cast exception, caused by an attempt to

typecast incorrectly (in certain circumstances).

IllegalArgumentException An illegal argument exception. Some methods

in the Java library throw this when they have

been invoked with one or more improper

arguments (e.g. an array argument is expected

to be sorted, but isn’t).

NumberFormatException A number format exception, which is a type of

illegal argument exception thrown by some

methods in the Java library when an argument

of type String is expected to represent a

number of some kind, but doesn’t.

We can restrict a catch block to handling just one particular type of exception by replacing

Exception at its entrance with the name of the exception type. For example, the following

includes an exception handler for I/O exceptions only – run-time exceptions will be handled by

the default handler:

 try {

 code that may give rise to an exception

 }

 catch (IOException e) {

 e.printStackTrace();

 }

All exception types (such as FileNotFoundException and IOException) are names of

predefined classes in Java. Like Exception, they have methods printStackTrace()

and getMessage(). A handler for a particular exception type also handles subtypes of the

exception. For example, a file-not-found exception arising in the try-block above will be

handled by the catch-block.

A run-time exception is nearly always a result of poor programming – if the divisor in a

division has the potential to be zero, for example, the programmer should check for it and avoid

the problem. It is not necessary (or usual) to supply exception handlers for run-time exceptions

– the system will always supply a default handler (as in the example at the start of the chapter).

Perhaps one of the few instances where run-time exceptions are appropriate is in detecting

format errors in strings. Java supplies method Double.parseDouble(s) which returns a

Exceptions 20.7

value of type Double that is represented by string s. If s does not represent a real number

parseDouble() throws a NumberFormatException. Integer.parseInt()

behaves similarly for integers.

Example 1: temperature converter

We write a program which converts Fahrenheit temperatures to Centigrade and vice versa. The

user types in a real number followed by C (for Centigrade) or F (for Fahrenheit) and the

temperature is displayed on the alternative scale. The following is a typical interaction at the

keyboard.

Welcome to the Centigrade-Fahrenheit converter.

212F

=100.0C

59;8C

Sample input: 27.23C or 98.2F

59.8C

=139.64F

45.6K

End with C (centigrade) or F (Fahrenheit)

The program cannot use Console.readDouble() to read the temperature because it does

not end with a space or end-of-line, but with a letter. We have to read a string and decompose it

into a real number (the temperature) and a character (‘C’ or ‘F’).

class TempConverter {

 public static void main(String[] args) {

 System.out.println("Welcome to the Centigrade-Fahrenheit converter.");

 while (!Console.endOfFile()) {

 try {

 String s = Console.readToken(); // the user’s input

 char scale = s.charAt(s.length()-1); // 'C' or 'F' (?)

 String number = s.substring(0,s.length()-1); // in real format (?)

 double temp = Double.parseDouble(number); // temperature as Double

 if (scale=='c' || scale == 'C')

 System.out.println("=" + (32.0+temp*1.8) + "F");

 else if (scale=='f' || scale == 'F')

 System.out.println("=" + ((temp-32.0)/1.8) + "C");

 else

 System.out.println ("End with C (centigrade) or F (Fahrenheit)");

 }

 catch (NumberFormatException e) {

 System.out.println ("Sample input: 27.23C or 98.2F");

 }

 }

 }

20.8 Java Programming

}

Notational convention

The Java class library provides various methods and constructors that may generate I/O

exceptions and hence must be invoked from within try-blocks. Whenever we introduce them,

we will indicate the exceptions they may generate by a throws-clause in the header. The

following method and constructor are typical:

void close() throws IOException

FileReader(String) throws FileNotFoundException

Some methods may generate many different kinds of I/O exception, not all of them classified.

When that is the case and an end-of-file or a file-not-found exception is among the possibilities,

we will indicate that as in

char readChar() throws IOException, EOFException

This declares that readChar() may generate an I/O exception of potentially any type,

including in particular an end-of-file exception.

3 Multiple exception handlers

Instead of one monolithic exception handler, we can provide several, each one tailored to a

particular type of exception. We do this by following a try-block with a succession of catch-

blocks, one for each type of exception of interest. The following is typical:

try {

 ... code that may give rise to an exception ...

}

catch (ArithmeticException e) {

 ... handle an arithmetic exception ...

}

catch (FileNotFoundException e) {

 ... handle a file-not-found exception ...

}

catch (IOException e) {

 ... handle any I/O exception other than a file-not-found exception ...

}

(The exception variable has been called e in all catch-blocks above, but different names could

have been chosen.) The code in at most one catch-block is executed. If no exception arises then

no catch-block is executed. Otherwise control passes to the first catch-block that deals with the

exception type. If no catch-block is provided for the type, the default handler is applied. When

a handler is provided for an exception and one or more of its sub-types, the handlers for the

sub-types must be placed first. For example, in the preceding code the catch-block for file-not-

Exceptions 20.9

found exceptions is placed before the one for I/O exceptions. The following trivial program

illustrates multiple catch-blocks:

class ExceptionHandling2 {

 public static void main(String[] args) {

 try {

 int k = (int)(Math.random()*2); // k = 0 or 1

 k = 5/k; // Oh, Oh if k=0

 char ch = "X".charAt(k); // Oh, Oh if k=1

 }

 catch (ArithmeticException ex) {

 System.out.println("An attempted zero divide!");

 }

 catch (StringIndexOutOfBoundsException ex) {

 System.out.println("A string index is out of bounds!");

 }

 }

}

If k is assigned 0 the first catch block is executed, and if k is assigned 1 the second catch-block

is executed. In this example, the behaviour of the program would not be altered by replacing

StringIndexOutOfBoundsException in the second catch-block with any of its parent

types, such as IndexOutOfBoundsException or RuntimeException. However, it is

probably best to prefer the more precise StringIndexOutOfBoundsException.

There is no need to provide a family of tailored exception handlers unless it brings some

advantage. In particular, a single handler for all I/O exceptions often suffices. When a block of

code may give rise to several exceptions (of the same or different types), it is best to wrap up

the entire code in a single try block followed by one or more catch-blocks. Lots of small try-

catch blocks can make the code difficult to read.

