

Writing Text Files © J. M. Morris 21.1

Writing Text Files

1 Creating text files: PrintWriter

We have employed text files by redirecting the standard input and output, but this way of

handling files has limitations. For example, it prevents the program outputting to both a file and

the screen, and it doesn’t allow us to create more than one file. We present ways of creating and

reading files under program control. For the moment we will be creating text files, by which is

meant that the files are composed of normal text such that they can be read using a text editor.

In fact a text file created by a program is indistinguishable from one created with a text editor.

Later we will see alternatives to text files.

Handling text files in Java requires knowledge of two classes: class PrintWriter is used for

creating and writing to text files, and class Scanner is used for reading them. We create a text

file by instantiating PrintWriter:

PrintWriter(String) throws IOException

new PrintWriter(s) creates a file called s on the disk. For example, we create a text file

called data.txt as follows:

PrintWriter myFile = new PrintWriter("data.txt")

Note that the creation of a text file may generate an I/O exception which the programmer must

be prepared to deal with. When the PrintWriter object is created, an empty file is

simultaneously created in the same folder (directory) as your program (i.e. in the same directory

as the .class file). The name of the file in the above example is data.txt, but you can choose

21.2 Java Programming

any name as long as it is permitted by the operating system (most operating systems have rules,

such as forbidding names containing ‘/’ or spaces). The name doesn’t have to have a .txt

suffix or any suffix at all, unless required by the operating system. However, in some systems it

is common to include a suffix such as .txt to indicate that the file is a text file. If the file is to

be created in some other folder, the path name of the file should be supplied. A typical path

name in Windows is c:\mybox\myjava\data.txt – this indicates the file called data.txt is

located in a folder called myjava, and this folder is in turn contained within folder mybox

located on drive c. In Java, it is always acceptable to use forward slashes in place of

backslashes in path names, as in c:/mybox/myjava/data.txt. Indeed it is more convenient to

do so because Java requires that backslashes be duplicated when they are included in strings, as

in "c:\\mybox\\myjava\\data.txt". In Unix, a typical path name is

/users/students/smith/mybox/myjava/data.txt. The following example illustrates the

use of a path name:

PrintWriter myFile = new PrintWriter("c:/mybox/myjava/data.txt")

In informal discussion we often talk about a file on disk by referring to the Java object

associated with it. Given the preceding declaration, for example, we may use myfile in place

of data.txt to refer to the file.

Once the file is created, you can write text to it using the following PrintWriter methods

void print(String)

void println(String)

PrintWriter printf(String,Object...)

f.print(s) and f.println(s) each append s to text file f, and in the case of

println()terminates the line. In Windows, lines are terminated by a carriage return

character ('\r') followed by a newline character ('\n'), whereas in Unix just a single

carriage return character is used. For example, if integer variable n contains 3 then the

statement

myFile.println("Result = " + n);

appends "Result = 3" to file myFile and terminates the line. There are versions of

print() and println() for all the basic types:

void print(int)

void println(int)

void print(double)

void println(double)

...

f.printf() is used just like System.out.printf(), except that the output is directed

to the file identified by f. For example, myFile.printf("Result = %d days", n)

appends "Result = 3 days" to file myFile assuming variable n contains 3. The value

returned by printf() is not of interest and we nearly always ignore it. Its parameters (other

than the first) are declared to be of type Object which for our purposes just means that any

Writing Text Files 21.3

type of argument can be supplied in practice.

When you have finished writing to the file you must invoke the following method in

PrintWriter:

void close() throws IOException

f.close() closes text file f. If you do not close the file, data may be lost, so don’t forget it!

Once you close a file you may not write to it further unless you “open” it again (see below).

Java’s classes are organised into packages. Classes concerned with files, such as

PrintWriter, are located in a package called java.io and must be made available by

importing them. You can import all the classes in package java.io by writing:

import java.io.*;

at the start of your program.

Example 1: passes and failures file

As an example, the program below reads a sequence of student records from the keyboard and

creates two text files – a passes file and a failures file. Each student record occurs on a line and

consists of forename, surname, and a percentage mark. A typical input is

 Bill Smith 69

 Jill Wright 43

 Anne Butler 89

 Max Wallace 38

The failures file (which we’ll call bad.txt) is to contain the names of all students whose mark

is less than 45, and the passes file (which we’ll call good.txt) is to contain the names of all

students whose mark is at least 45. The program follows. Observe that a single exception

handler is provided rather than one for each file operation. This is the preferred style to avoid

cluttering the code with try-catch blocks.

import java.io.*;

class TextWrite {

 public static void main(String[] args) {

 try {

 final int passMark = 45;

 PrintWriter passes = new PrintWriter("good.txt");

 PrintWriter failures = new PrintWriter("bad.txt");

 while (!Console.EndOfFile()) {

 String forename = Console.readToken();

 String surname = Console.readToken();

 int mark = Console.readInt();

 if (mark<passMark)

 failures.println(forename + " " + surname);

21.4 Java Programming

 else

 passes.println(forename + " " + surname);

 }

 passes.close(); failures.close();

 }

 catch(IOException e) {

 System.out.println("File handling failure!");

 }

 }

}

Files created using PrintWriter are just regular text files whose contents may be examined

by opening them in a text editor (such as WordPad or Notepad in Windows).

The names of the files in the program above (bad.txt and good.txt) have been built into the

program. If we prefer, we could allow the user to give the files names of his or her choosing,

for example by entering them as command-line arguments:

 java TextWrite pass.txt fail.txt

(note there is no > in the command line because we are not engaging in redirecting the standard

output here – each of pass.txt and fail.txt is a string argument to method main() of class

TextWrite). In that case, the PrintWriter declarations in the programs should be

PrintWriter passes = new PrintWriter(args[0]);

PrintWriter failures = new PrintWriter(args[1]);

It is still possible to take input from a text file (students.txt, say) by re-directing the standard

input:

 java TextWrite good.txt bad.txt < students.txt

Alternatively, the user could be prompted to key in the names of the files during execution:

System.out.print("Enter name of passes file: ");

String passFile = Console.readString();

System.out.print("Enter name of failures file: ");

String failFile = Console.readString();

PrintWriter passes = new PrintWriter(passFile);

PrintWriter failures = new PrintWriter(failFile);

At the first prompt, the user should enter, say, good.txt, and at the second bad.txt.

Appending to existing text files

You may append text to an already existing text file. You “open” the file (i.e. make it available

to the program) by creating a PrintWriter object as before, but this time wrapping the

filename in some additional text:

PrintWriter(new FileWriter(String, boolean)) throws IOException

Writing Text Files 21.5

new PrintWriter(new FileWriter(s,true)) makes the text file named s on the

disk available for output, such that all data will be written at the end of the file right from the

start. The file will normally already exist, but if not then an empty file with the given name will

be created. As an example:

PrintWriter myFile = new PrintWriter(new FileWriter("data.txt", true))

opens file data.txt for appending. Although class FileWriter is used as an intermediary

in the constructor; no further knowledge of it is needed in order to use class PrintWriter.

