

Reading Text Files © J. M. Morris 22.1

Reading Text Files

1 Reading from text files: Scanner

Text files, whether produced by a program or with a text editor, can be read by a program using

class Scanner, part of the java.util package. We “open” a file for reading by creating a

Scanner object:

Scanner(new File(String)) throws FileNotFoundException

new Scanner(new File(s)) makes the file called s on the disk available for reading.

Class File has no role to play other than as an intermediary in the construction of a Scanner

object, and we need not concern ourselves with it further; it resides in package java.io and

must be imported. The file named s should exist in the same folder as the executable program,

unless a path name is given. It doesn’t matter how the file was created – it could have been

created by a text editor, or a program using class PrintWriter, or a program using

redirection of the standard output, or by any other means. The following is an example of using

Scanner:

 Scanner myFile = new Scanner(new File ("data.txt"));

Scanner provides input via the methods below. In each case, reading begins at the start of the

file and advances with each read operation until the end of the file.

String nextLine()

String next()

int nextInt()

long nextLong()

22.2 Java Programming

double nextDouble()

boolean nextBoolean()

myFile.nextLine() returns the next line from file myFile (without the trailing end-of-

line delimiter). If the file is currently positioned in the middle of a line, the remainder of the

line is returned. It is an error if there is no more input. myFile.next() skips whitespace

until it finds a token and then reads and returns the token (reading just to the end of the token,

and no more). Whitespace means all characters that normally separate words, such as spaces

and end-of-line characters (i.e. a newline or carriage-return). A token is a maximal sequence of

characters other than whitespace. A token is just another name for a “word”, but we prefer

token to indicate that the word need not consist of letters only but could include, for example,

digits and punctuation characters. For example, the tokens in “30/20 equals 1.5” are “ 30/20”,

“equals”, and “1.5”. Tokens may be interspersed with any number of separators; for example

the tokens in “ 30/20 equals 1.5 ” are the same as those in “30/20 equals 1.5”.

myFile.nextInt() skips whitespace until it finds a token and then reads and returns the

token as a value of type int. It is an error if the token does not represent an integer.

nextLong(), nextDouble(), and nextBoolean() behave similarly.

Scanner provides the following methods for detecting what the next read operation will

yield:

boolean hasNextLine()

boolean hasNext()

boolean hasNextInt()

boolean hasNextLong()

boolean hasNextDouble()

boolean hasNextBoolean()

myFile.hasNextLine() indicates whether there is another line in myFile, and

myFile.hasNext() indicates whether there is another token. myFile.hasNextInt()

indicates whether the next token can be interpreted as a value of type int. hasNextLong(),

hasNextDouble(), and hasNextBoolean() behave similarly. Always choose the

appropriate method to detect the end of input; for example, if you are reading the file line by

line, use hasNextLine(), not hasNext().

The read methods in Scanner other than nextLine() recognise but do not read an end-of-

line character marking the end of a token. This may occasionally make it necessary to read an

end-of-line character explicitly using nextLine(). Similarly, caution is required when using

hasNextLine() in a loop to detect an end of file: make sure no end-of-line character is left

unread (see example later).

When you have finished reading the file you should close it by invoking the following method

in Scanner:

void close()

Reading Text Files 22.3

myFile.close() closes file myFile. No harm is done if a file open for reading is not

closed, but open files consume quite a chunk of memory and so it pays not to leave them open

unnecessarily.

Closing a file is also useful if you want to read it a second time. Just close the file and create a

new Scanner object associated with the file name.

Example 1: counting words

The following example program counts the number of words in a text file, where the name of

the file is supplied as a command-line argument. For example, the following command line

counts the number of words in a file called source.txt:

 java CountWords source.txt

Note again that source.txt is not preceded by < – it is no more than a string supplied as a

parameter to main().

import java.io.*; // for File class

import java.util.*; // for Scanner class

class CountWords {

 public static void main(String[] args) {

 try {

 Scanner in = new Scanner(new File(args[0]));

 int numWords = 0; // number of words

 while (in.hasNext()) {

 numWords++; in.next();

 }

 in.close();

 System.out.println(numWords + " words");

 }

 catch(IOException e) {

 System.out.println("File unreadable");

 e.printStackTrace(); //optional, for additional info

 }

 }

}

2 Reading from text files: ConsoleReader

Instead of Scanner we can use ConsoleReader to handle input from text files. It has the

advantage that it operates identically to Console, and the disadvantage that it is not part of

the standard Java library. It is best to use Scanner when it’s convenient to do so, but

Scanner has the disadvantage that it provides the input as either tokens or lines while

ConsoleReader can additionally supply the input character by character. You can get a copy

of ConsoleReader from the home web page.

22.4 Java Programming

ConsoleReader behaves identically to Console, except that you have to open the text file

before you start reading from it, and you should close it when you are finished. To open a text

file for reading you construct an object of type ConsoleReader:

ConsoleReader(String)

new ConsoleReader(s) makes the text file named s on the disk available for reading (as

well as creating a ConsoleReader object). For example, the following opens a text file

called data.txt:

ConsoleReader myInput = new ConsoleReader("data.txt");

ConsoleReader handles all I/O exceptions internally, so no try-catch blocks are needed. For

every method of Console, there is a similar one in ConsoleReader – just replace the

prefix Console with a reference to a ConsoleReader object. For example, if the first data

item in file data.txt just opened above is an integer, it can be read by executing

int n = myInput.readInt();

ConsoleReader provides the following method:

void close()

f.close() closes file f. No harm is done if the file is not closed, but open files consumes

memory space so it is good housekeeping not to keep too many files open.

Example 1: counting words

The following example program counts the number of words in a text file, where the name of

the file is supplied as a command-line argument. For example, the following command line

counts the number of words in a file called source.txt:

 java CountWords source.txt

The program uses the fact that readToken() returns null if there is no more data in the

file.

class CountWords {

 public static void main(String[] args) {

 ConsoleReader in = new ConsoleReader(args[0]);

 int numWords = 0; // number of words

 String w = in.readToken();

 while (w != null) {

 numWords++;

 w = in.readToken();

 }

 in.close();

 System.out.println(numWords + " words");

 }

Reading Text Files 22.5

}

3 Reading text files from the world-wide web OPTIONAL

Every file on the world-wide web has a unique identification called an URL (which stands for

Uniform Resource Locator). A typical URL is http://www.tug.org/tex-ptr-faq which

identifies a file called tex-ptr-faq residing on a web site known as www.tug.org. You will

be familiar with URL’s from web browsers such as Internet Explorer or Firefox. In fact, each

page you download from the web is just a text file which contains textual information to be

displayed intermixed with textual instructions on how the browser should display it. Scanner

can be used to read a text file identified by an URL, using the following constructor

Scanner(

 new InputStreamReader(

 (new URL(String)).openStream())) throws IOException

The string argument is the URL identifying the text file. The constructor uses classes

InputStreamReader and URL as intermediaries, and although they look frightening, no

understanding of them is needed. Once the Scanner object is created it is used just as though

it was associated with a text file residing on your machine. InputStreamReader is located

in package java.io, and URL is located in package java.net and so programs that use

them must include the appropriate import statements.

Example 1: Printing a file from the web

As an example, the following program prints out file http://moodle.dcu.ie.

import java.io.*;

import java.util.*;

import java.net.*;

class ReadFromUrl {

 public static void main(String[] args) {

 try {

 Scanner in = new Scanner(

 new InputStreamReader(

 (new URL("http://moodle.dcu.ie")).openStream()));

 while (in.hasNextLine()) {

 String s = in.nextLine();

 System.out.println(s);

 }

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 }

}

22.6 Java Programming

If you are executing the program from a machine on a local network, your program may be

refused permission to access external files without routing the request through a proxy server,

i.e. a machine which manages and regulates external web traffic to ensure security. The web

proxy in the School of Computing, for example, is called wwwproxy.computing.dcu.ie.

Every server provides a range of services, each service being identified by a port number. The

port number wwwproxy.computing.dcu.ie uses for dealing with web access requests is 8000.

You can inform Java of all this by including the following in your program

System.setProperty("http.proxyHost", "wwwproxy.computing.dcu.ie");

System.setProperty("http.proxyPort", "8000");

Once these statements have been executed, subsequent web requests will be routed through the

web proxy allowing your program external access to the web.

4 Parsing text: Scanner

The Scanner class can be used to extract the tokens from a string: just create an instance of

Scanner with the string as argument to the constructor:

Scanner(String)

new Scanner(s) creates an instance of Scanner in which the tokens and lines read are

taken from s. For example:

Scanner t = new Scanner(" some string this");

System.out.print(t.next() + t.next());

causes somestring to be displayed on the screen. When using Scanner in this way, there

is no need to invoke close() at the end.

5 Example: student records

The following case study illustrates the use of text files where each item in the file is composed

of a few sub-items. We make two programs, one of which creates a text file of student records,

and the other of which queries the file. The program to create the student file will be invoked

by the command

 java CreateStudents students.txt

This creates a text file of students (here called students.txt) in which each line contains the

name (forename and surname), sex (boolean true for male), and exam mark of a single

student. The program with some sample students follows. Note that we use println (rather

than print) to write the final item in each student record; this makes the information for each

student easily readable when we examine the file.

Reading Text Files 22.7

import java.io.*;

class CreateStudents {

 public static void main(String[] args) {

 try {

 // Create a small test file of students

 PrintWriter out = new PrintWriter(args[0]);

 out.print("Jill Jones" + " "); out.print(87+ " "); out.println(false);

 out.print("Michael MacDonald" + " "); out.print(19+ " "); out.println(true);

 out.print("Pete Pineapple" + " "); out.print(65+ " "); out.println(true);

 out.print("Jenny Murphy" + " "); out.print(49+ " "); out.println(false);

 out.close();

 }

 catch (IOException e) {

 System.out.print("Could not create file " + args[0]);

 }

 }

}

The querying program displays the names of students whose mark exceeds a value supplied in

the command line. For example, the following command displays the names of students whose

mark exceeds 60 in a file called students.txt:

 java ListStudents students.txt 60

The program follows. Note carefully that after each student is read, it is necessary to read the

end-of-line character by invoking nextLine().

import java.io.*;

import java.util.*;

class ListStudents {

 public static void main(String[] args) {

 int divMark = Integer.parseInt(args[1]);

 try {

 Scanner in = new Scanner(new File(args[0]));

 while (in.hasNextLine()) {

 String name = in.next() + " " + in.next();

 int mark = in.nextInt();

 boolean isMale = in.nextBoolean();

 in.nextLine(); // remember to read end-of-line!

 if (mark>=divMark)

 System.out.println(name);

 }

 in.close();

 }

 catch(IOException e) {

22.8 Java Programming

 System.out.print("Could not access file " + args[0]);

 }

 }

}

