Writing Binary
Files

1 Binary versus text files

The information in a file may be encoded as either text or binary data. Text and binary files are
distinguished only in the way that data is encoded and organised in the file. Whenever we
choose to store data as a text file, we might alternatively have chosen to store it as a binary file,
and vice versa. We make our choice based on convenience and computational cost for the
particular application we have in mind.

Text files have two advantages over binary files: they can be viewed using any text editor, and
they are highly portable. By portable we mean that a file produced by a program running on a
certain machine can be conveniently read from and written to by another program running on a
different machine, even if that program has been written in a different language. Text files,
however, have higher computational and storage costs. In particular, if they contain lots of non-
text data (such as integers, reals, and booleans) they do not use disk space efficiently, and it
takes longer to retrieve data. In binary files, data is stored in the same format as internally in the
machine, and this brings a space gain: a binary integer occupies 32 bits whereas its decimal
textual representation might occupy as many as 100 bits. And a time saving follows: the
machine needs to transfer fewer bits when reading or writing information, and it does not need
to translate the data into a different format.

Writing Binary Files © J. M. Morris 23.1



23.2 Java Programming

Binary files are an alternative to text files. They are most appropriate when the file is composed
of a collection of chunks of data, where each chunk consists of information under a fixed set of
headings. A chunk of data in this context is technically called a record. For example, a file of
student data is composed of a collection of records, one record per student, with each record
having information under the headings name, student number, courses, fees, etc.

2 Organisation of binary files

A binary file containing the integers 23, 17, 22, 28, and 10 (of type int) can be pictured as:

| 23 | 17 | 22 | 28 | 10 |

Each item of data in a file occupies space. Space is measured in either bits or bytes, where one
byte is equivalent to eight bits. A single bit contains either a 1 or a 0. A single integer (of type
int) occupies 4 bytes, i.e. 32 bits. For example, 23 (of type int) happens to be stored as the
32-bit sequence 00000000000000000000000000010111. A real number (of type double)
occupies 8 bytes, a character occupies 2 bytes, a boolean occupies 1 byte, and a string occupies
two plus as many bytes as there are characters in the string (when encoded in a format called
UTF which we explain later) . The size of the above file, for example, is 20 bytes, made up of 5
integers at 4 bytes each. Looking microscopically at its contents, we would see the binary
sequence

0000000000000000000000000001011100000000000000000000000000010001000000000000
0000000000000001011000000000000000000000000000011100000000000000000000000000
00001010

There is no limit on the size of a file, other than that imposed by the available space on the
storage medium.

We can identify the position of any item in the file by giving its offset in bytes from the start of
the file. The offsets are shown in the lower line of the picture below:

| 23 | 17 | 22 | 28 | 10 |
0 4 8 12 16
For example, number 22 in the file has offset 8 because it is preceded in the file by two integers
each occupying 4 bytes.

The items in a binary file need not all be of the same type. For example, the file depicted below
has 5 items, of which four are of integer type integer and one is of string type.

| 23 | 17 JJon | 28 | 10 |
0 4 8 14 18

However, it is uncommon that we mix types in this way.



Writing Binary Files 23.3

Each record may be (and usually is) composed of several pieces of data, not all of the same
type. For example, there are three records in the following file, each one consisting of a
person’s name, age, and sex (true for male):

Roger Federer i 28 | true ‘ Venus Williams: 29 : false | Andy Murray i 22 : true

In each record, each component is called a field. The records in the file depicted above, for
example, have three fields.

If you are presented with a binary file prepared by another programmer, it is not possible to
discover its structure by examining its contents. You have to be told. For example, if the file is
40 bytes long, it might consist of 10 integers (of type int), or 5 reals (of type double), or 4
records each of which consists of a three-character string and an integer. If the file actually
consists of say, 5 reals, and your program treats it as 10 integers, no program error will arise.
However, the integers you read will not be meaningful, and neither will your results.

3 Navigating binary files

File contents are changed by reading records into variables in the program, making the change,
and then writing the changed variables. If a file is small, we can read it in its entirety into
memory, make any changes we want, and write it all back to the file. However, many files are
very large, much larger than would fit in main memory — think of a file of all the tax payers in a
country, for example. We process larger files by keeping a relatively small number of records
in the program’s variables at any one time, often no more than one or two.

In computational terms, reading and writing files is a complex and potentially slow process.
Fortunately, nearly all the work is done for us behind the scenes by the operating system. To
help the operating system work efficiently, the program is expected to announce when
processing of a particular file begins — this is called opening the file, and when it ends — this is
called closing the file.

Every file has associated with it a hidden “file pointer” maintained by the run-time system. This
is an integer variable (of type 1ong) containing a byte offset in the file. The file pointer “points
to” a location in the file (or possibly just after the end of the file). There is a file pointer for
each file being processed in the program. When the file is opened for reading (i.e. made
available to the program for reading purposes), the file pointer indexes the start of the file:

| 23 | 17 | 22 | 28 | 10 |
0 4 8 12 16

!

Activity on a binary file, whether reading or writing, always takes place at the location indexed
by the file pointer. When an item is read from a file (into a program variable), the item is




23.4 Java Programming

retrieved from the position indexed by the file pointer, and the file pointer is advanced by the
length of the item. After a single integer read operation on the above file, for example, the
value 23 is read and the file pointer is positioned as follows:

| 23 | 17 | 22 | 28 | 10 |
0 4T 8 12 16

Reading a file has no affect on its contents. The next read will retrieve 17, and three further
reads will retrieve 22, 28, and 10 in that order. When the last integer is read, the file pointer
will have advanced to just after the end of the file:

| 23 | 17 | 22 | 28 | 10 |
0 4 8 12 16 20

!

When we write a record when the file pointer is positioned just after the end, the effect is to
append it to the file (and the file pointer is advanced by the length of the item written). For
example, if we write 71, say, to the file depicted above, the result is:

| 23 | 17 | 22 | 28 | 10 | 711 |
0 4 8 12 16 20 24

When a file is opened for writing, the file pointer is positioned either at the start of the file or
just after the end (as in the immediately preceding picture), depending on the Java class used to
open the file. We will be using class RandomAccessFile for which the pointer is
positioned at the start.

4 Writing to binary files

Java provides a choice of classes for accessing binary files; we will use RandomAccessFile
(an alternative is SeekableByteChannel which is more general but significantly less
convenient). To open a binary file for writing we create an instance of class
RandomAccessFile:

RandomAccessFiIe(String, "I‘W") throws FileNotFoundException

new RandomAccessFile (s, "rw") makes the file named s on the disk or external
medium available to the program for writing or reading; for the moment we focus on writing.
For example,

RandomAccessFile myFile = new RandomAccessFile("data.dat", "rw");

If a file of that name does not already exist, one will be created if possible. The name of the file



Writing Binary Files 23.5

can be any name allowed by the operating system. A path name should be supplied for files that
reside in a folder other than that in which the program resides (see text files). For example, if
instead of data.dat above we write c: /myDirectory/data.dat (running under Windows) it
refers to a file called data.dat in folder mybirectory on drive c. Instances of
RandomAccessFile contains, amongst other things, a file pointer; it initially points to the
start of they file, i.e. at offset 0. After the declaration above, variable myFile references an
object of type RandomAccessFile, but we also loosely use the name myFile in
explanatory text to describe the file itself. RandomAccessFile resides in the java.io
package and must be imported.

RandomAccessFile provides the following methods for writing data:

void writeInt(int) throws 10Exception

void writeDouble(double) throws 10Exception
void writeBoolean(boolean) throws 10Exception
void writeChar(int) throws I0Exception

void writeChars(String) throws I10Exception
void writeUTF(String) throws I0Exception

f.writeInt (k) writes k to file £, and advances the file pointer by 4 (4 being the length of a
value of type int). £.writeDouble (x) writes x to file £, and advances the file pointer by
8. f.writeBoolean (b) writes b (in binary form) to file £, and advances the file pointer by
1. £.writeChar (c) writes character ¢ to f, and advances the file pointer by 2 (for a
technical reason that we do not go into here, the argument of writeChar () is declared to be
an integer although it is used to write a character). £.writeChars (s) writes each character
in s to £ in turn, and advances the file pointer by s.length (). £.writeUTF (s) writes s
to £, where the string is encoded in the file according to UTF encoding. UTF encoding encodes
the length of the string as well as its constituent characters, making it easier to read from the
file subsequently. In UTF, all the familiar Western characters (i.e. the ASCII characters) are
stored as a single byte (an exception is '\0"' which occupies two bytes), so the length of a
UTF string for our purposes equals the number of characters in the string plus 2 for the
encoding of the string length. For example, the string “horse” occupies 7 bytes when encoded
in UTF. Strings are more commonly written using writeUTF () rather than
writeChars ().

RandomAccessFile also provides:
void close() throws IOException

f.close () closes file f. It is important to close files at the end of output, as otherwise data
may be lost. Closing files also releases memory for re-cycling.

Example 1: creating a file of integers

The program below creates a binary file called ints.dat which contains 50 random integers
each in the range 0 to 19:



23.6 Java Programming

import java.io.*;

class MakeIntsFile {
public static void main(String[] args) {
try {

RandomAccessFile out = new RandomAccessFile("ints.dat", "rw");

for (int i=0; i<50; i++) {
int n = (int)(Math.random()*20);
out.writeInt(n);

}

out.close();

}
catch (IOException e) { System.out.printin(“Could not write to file.");}
}
}

After the program has executed, you should see a file called ints.dat in the same directory as
the program. If you examine the properties of the file, you will see that its size is 200 bytes (50
integers at 4 bytes each). However, if you try to inspect the contents with a text editor you will
see what appears to be garbage. To display its contents you must write your own program to do
SO.

Example 2: creating a file of complex records

The program below creates a binary file called persons.dat containing the records of persons
whose details are read from the standard input. Each line read on the standard input contains
the person’s name (forename only), age, and sex, such as

Bill 23 male
We choose to store the person’s sex in the file as a boolean, because that occupies less space.

import java.io.*;

class CreatePersons {
public static void main(String[] args) {
try {

RandomAccessFile out = new RandomAccessFile("persons.dat","rw");

while (IConsole.endOfFile()) {
String name = Console.readToken(); int age = Console.readInt();
String sex = Console.readToken();
out.writeUTF(name)); out.writeInt(age);
out.writeBoolean(sex.charAt(0)=='m");

}

out.close();

}



Writing Binary Files 23.7

catch (IOException e) { System.out.printin("Could not write to file"); }



