
Reading Binary Files © J, M. Morris 24.1

Reading Binary

Files

1 Reading binary files

To open a binary file for reading, we create an instance of class RandomAccessFile in the

following form:

RandomAccessFile(String, "r") throws FileNotFoundException

new RandomAccessFile(s,"r") makes the file named s on the disk or external

medium available to the program for reading. Actually, we can use "rw" instead of "r"

above, but if we only intend to read then "r" is best as it protects the file from accidental

writing, and it is more efficient. The rules governing file names are as given above. The file

pointer is initially set at offset 0. RandomAccessFile provides the following methods for

reading data:

int readInt() throws IOException, EOFException

double readDouble() throws IOException, EOFException

boolean readBoolean() throws IOException, EOFException

char readChar() throws IOException, EOFException

String readUTF() throws IOException, EOFException

f.readInt() reads and returns an integer from file f. The integer is read from the file at the

position indicated by the file pointer, and the file pointer is advanced by the length of an integer

24.2 Java Programming

(4 bytes). It is the programmer’s responsibility to ensure that an integer was written to that

location. If something other than an integer was written, the value returned is meaningless. If

fewer than four bytes remain from the file pointer to the end of the file, an end-of-file exception

is generated. f.readDouble(), f.readBoolean(), and f.readChar() behave

analogously as their name suggests.

f.readUTF() reads a string provided it has been written to f using writeUTF(). As a

string written by writeUTF()includes within it an encoding of its length, readUTF()

knows just how many bytes to retrieve. If you use readUTF(), the string must have been

written using writeUTF(), not writeChars(). Conversely, if a string is written to a file

using writeUTF(), it can only be retrieved using readUTF().

RandomAccessFile provides the following methods for managing files:

long length() throws IOException

void setLength(long) throws IOException

long getFilePointer() throws IOException

void seek(long) throws IOException

f.length() returns the current size of the file in bytes, and f.getFilePointer()

returns the current value of the file pointer (the return type is long in each case because very

large files may have a length greater than can be expressed in 32 bits). There is no simple

method to determine if we’ve reached the end of the file when we are reading all the records of

file f one after the other. So we code it ourselves as

f.getFilePointer()<f.length() (or, less attractively, we could explicitly catch an

end-of-file exception). f.setLength(n) truncates the file to the first n bytes; its use is

limited mostly to f.setLength(0) to make the file empty.

f.seek(n) causes the file pointer of file f to be positioned n bytes from the start of the file.

If you want to read or write at an offset different from that of the current value of the file

pointer, you must first invoke seek(). For example, suppose f references a

RandomAccessFile where the records are integers. Then the following reads the first and

third integer from f:

 f.seek(0); int j = f.readInt();

 f.seek(8); int k = f.readInt();

We write 8 in f.seek(8) above because integers occupy 4 bytes, and hence the third integer

is located 8 bytes from the start. f.seek(f.length()); positions the file pointer just

after the end of the file, ready to append new data.

Example 1: searching an integer file

In the following program, we count the number of occurrences of a particular integer in the file

of integers called ints.dat created in an example above. The integer being sought is passed as

a command-line argument. For example, executing

Reading Binary Files 24.3

 java IntsLookup 27

will print the number of occurrences of 27 in ints.dat.

import java.io.*;

class IntsLookup {

 public static void main(String[] args) {

 try {

 RandomAccessFile in = new RandomAccessFile("ints.dat", "r");

 int x = Integer.parseInt(args[0]); // x is the search value

 int count = 0; // number of occurrences of x

 while (in.getFilePointer()<in.length()) {

 int k = in.readInt();

 if (k==x) count++;

 }

 in.close();

 System.out.println(count + " occurrences of " + x);

 }

 catch (IOException e) { System.out.println("Could not read file"); }

 }

}

Although we happen to know the number of integers in ints.dat (because we created it

ourselves), the program does not exploit that fact. Instead, it reads integers until it reaches the

end of the file, and this makes the program applicable to integer files of any size.

Example 2: Interrogating a file of complex records

The following program calculates the average age of people in the persons file persons.dat

we created earlier:

import java.io.*;

class AverageAge {

 public static void main(String[] args) {

 try {

 RandomAccessFile in = new RandomAccessFile("persons.dat","r");

 int totalAge = 0; // total of ages

 int numRecs = 0; // number of records read

 while (in.getFilePointer()<in.length()) {

 in.readUTF(); // skip name

 int k = in.readInt(); // read age

 in.readBoolean(); // skip sex

 totalAge = totalAge+k;

 numRecs++;

 }

24.4 Java Programming

 in.close();

 System.out.println("Average age: " + totalAge/numRecs);

 }

 catch (IOException e) { System.out.println("Could not read file"); }

 }

}

Each execution of the loop body retrieves a single record. The name and sex information is

read to advance the file pointer appropriately, but the value returned in each case is discarded.

Some pitfalls

Opening a text file for writing in the standard way deletes an existing file of the same name if

one happens to exist. However, that is not the case when using RandomAccessFile; in this

case we can use setLength(0) to erase the file contents.

If we use RandomAccessFile with the intention of creating a new file, but coincidentally a

file of exactly the same name exists, we will end up inadvertently overwriting the contents of

the existing file. If necessary, we can use class File (see below) to check for the existence of a

file of the same name.

When we open an existing text file for the purposes of appending new data, the file pointer is

automatically positioned just after the end of the file. Using RandomAccessFile to open a

binary file for the purposes of appending new data, however, leaves the file pointer positioned

at the start of the file. We may need to use seek() to position the file pointer as we wish.

Finally, the Java documentation does not actually specify the initial value of the file pointer

when using RandomAccessFile. However, the current implementation positions it at the

start of the file. If you needed to be really sure of that for all possible future implementations of

Java, you might take the precaution of executing seek(0) after the file has been opened. But

such caution is not needed for most applications.

