
File Management © J. M. Morris 26.1

File Management

1 File information: File

The file system can be manipulated using either class File which is simple, or class Files

which is complex but more general and flexible. Here we use class File.

Files have properties, such as a name, whether or not it is readable and/or writable, whether it is

a regular file or a folder (directory), and so on. Whether a file is readable or writable has

nothing to do with the contents or the file or its structure or any error situations, but is a

property of the file as an entity in the system. For example, a file may be unwritable if it exists

on a write-once CD, or it may be unreadable because the user attempting to read it does not

have permission to do so. Java provides the class File for discovering and modifying

properties of files. It has a simple constructor:

File(String)

new File(s) creates an object of type File pertaining to a file known to the operating

system as s. For example, the declaration

 File myInfo = new File("diskData");

creates and assigns to variable myInfo an object of type File pertaining to file diskData. A

path name can be supplied in place of a simple file name. It is possible that a file called

diskData does not exist; that is allowable, but a new file of that name is not created. Class

File resides in the java.io package which must be imported

File includes the following methods for discovering the status of a file:

26.2 Java Programming

boolean exists()

boolean isDirectory()

boolean isFile()

boolean canRead()

boolean canWrite()

String getName()

File[] listFiles()

f.exists() returns a boolean indicating whether the file associated with f exists.

f.isDirectory(), f.isFile(), f.canRead(), and f.canWrite(), return

booleans indicating whether the file is a directory, a regular file, is readable, and is writable,

respectively. A regular file is, for all practical purposes, a file that it is not a directory. All these

methods can be invoked without error whether or not the file exists. f.getName() returns

the name of the file. f.listFiles() returns an array of File objects, one for each file or

directory in the directory identified by f; null is returned if f does not identify a directory or

if an i/o error occurs. The following methods of File are used to change the status of files:

boolean renameTo(File)

boolean delete()

f.renameTo(fnew) changes the name of the file associated with f to the name associated

with fnew. Note that the new name must be supplied within an object fnew of type File.

For example, myFile.renameTo(new File("newFile")) changes the name

associated with myFile to newFile. f.delete() deletes the file associated with f. Both

methods returns a boolean indicating whether they completed successfully.

Example 1: deleting files

The following program deletes files whose names are keyed in by the user. It takes care not to

delete directories, and reports on the success or otherwise of each deletion.

import java.io.*;

class DeleteFiles {

 public static void main(String[] args) {

 System.out.print("Delete file: "); // prompt user for file name or end of input

 while (!Console.endOfFile()) {

 String fileName = Console.readString(); // read name of file to be deleted

 File file = new File(fileName);

 if (!file.exists())

 System.out.println("Cannot find file " + fileName);

 else if (file.isDirectory())

 System.out.println("Cannot delete directory " + fileName);

 else {

 boolean ok = file.delete();

 if (ok) System.out.println(fileName + " deleted");

 else System.out.println("Cannot delete file " + fileName);

File Management 26.3

 }

 System.out.print("Delete file: "); // prompt for file name or end of input

 }

 }

}

Example 2: generating a unique file name

The following piece of code generates a file name that is guaranteed to be different from that of

any other file in the directory.

String tempName = "Temp" + (int)(Math.random()*1000000);

File theFile = new File(tempName);

while (theFile.exists()) { // bad luck -- try again

 tempName = "Temp" + (int)(Math.random()*1000000);

 theFile = new File(tempName);

}

Example 3: listing the files in a directory

The following code segment lists the names of all files in a given directory.

String dirName = "C:\Java\MyProgs";

File theDirectory = new File(dirName);

File[] files = theDirectory.listFiles();

if (files==null) // dirName not a valid directory name

 System.out.println(dirName+" is not a directory ");

else {

 for (File file: files)

 System.out.println(file.getName());

}

