
Object & Wrapper Classes © J. M. Morris 27.1

Object & Wrapper

Classes

1 Object class

Java includes a special built-in class called Object. Every class you introduce is deemed to be

an extension of Object. This means, in effect, that the methods of Object are automatically

included in the classes you define, the most important of these being toString and equals.

Even if you do not use these methods explicitly, you will be almost certainly be making use of

them indirectly through the use of methods in the Java library (for example, when you use the

list classes to be introduced later).

As we saw, the default implementations of toString and equals don’t usually work as we

would wish, so Java allows us to override them. This means that if we explicitly include our

own version of toString, say, it replaces or “overrides” the default version. We have seen

how to do this.

Variables, in particular parameters, may be declared to be of a type Object. Such parameters

have the property that the associated argument may be (a reference to) an object of any type.

For example, the following method prints an object of any type multiply:

 static void putMany(Object p, int n) { // print p, n times (n>=0)

 for (int i=0; i<n; i++)

27.2 Java Programming

 System.out.println(p);

 }

(Recall that an object p is printed by displaying the string returned by p.toString() – the

default one if you haven’t supplied one explicitly for p’s class.) The following, for example, are

legitimate uses of putMany:

putMany(new Point(3,4), 5);

putMany("Fire!", 3);

Of course, putMany(23,3), say, is not legitimate because integers are not objects (but see

below).

2 Overriding equals()

To override the default equals for a class called MyClass, write an instance method with the

following shape:

public boolean equals(Object obj) {

 if (obj== null) return false;

 MyClass p = (MyClass) obj;

 ... compare contents of this object with those of p ...

}

It is essential that the parameter be declared to be of type Object, even though we know in

practice the argument will be of type MyClass; the type mismatch is fixed up by a type cast in

the body. It is also necessary to include public in the header. Here is an example:

class Point {

 private int x, y;

 // more ...

 public boolean equals(Object obj) {

 if (obj== null) return false;

 Point p = (Point) obj;

 return x==p.x && y==p.y;

 }

}

Example 1: unique occurrences in an array

We write a generic method which counts the number of unique objects in an array, where

uniqueness is with respect to object contents. By “generic” we mean that the same method will

work for arrays of any kind of object. We illustrate its use assuming the availability of class

Point above.

Object and Wrapper Classes 27.3

class Uniques {

 static int uniques(Object[] b) { // number of unique items in b

 int count = 0; // number of unique items encountered

 for (int i=0; i<b.length; i++) {

 int j=0;

 while (!b[i].equals(b[j])) {

 j++;

 }

 if (j==i) count++;

 }

 return count;

 }

 public static void main(String[] args) {

 Point[] ps = {new Point(4,5), new Point(3,4), new Point(4,5)};

 System.out.println(uniques(ps)); // 2 will appear

 }

}

Method uniques() compares each object b[i] in the array with every object b[j] that

precedes it, i.e. it compares b[i] with b[0], b[1], b[2], ..., b[i], stopping when an

object b[j] is found that is identical with b[i]. If none is found before b[i] itself, the loop

will nevertheless terminate because eventually j equals i and trivially

b[i].equals(b[i]) is true. In that case b[i] has not occurred previously in b and so

count is incremented. The final value of count evidently equals the number of unique

objects in b. As an exercise, confirm that the method doesn’t work if equals is not

overridden, and explain the output you see.

Consistency requirements on equals()

It is important that equals() really does perform a genuine equality test. For example,

although we do not offend the rules of Java if we define equals() for some class as follows

 public boolean equals(Object obj) {

 return false;

 }

we should not be surprised if we fail to get sensible behaviour from a program that invokes

such a method. If you proceed sensibly following your intuitive understanding of equality you

will not meet any difficulties. If you are in doubt, check that your definition satisfies the

following requirements:

(i) p.equals(p) yields true.

(ii) p.equals(q) yields the same as q.equals(p).

(iii) If both p.equals(q)and q.equals(r) yield true, so does p.equals(r)

27.4 Java Programming

3 Wrapper classes

When a formal parameter is of type Object, the corresponding argument must be a reference

to an object, and not a value of a primitive type (recall that the primitive types are int, long,

short, byte, double, float, char, and boolean). Java helps to overcome this by

supplying wrapper classes for dressing up primitive values as objects. There is a wrapper class

for each primitive type. The wrapper for type int is called Integer. It has the following

constructor and methods:

Integer(int)

int intValue()

String toString()

boolean equals(Object)

int compareTo(Integer)

static int parseInt(String)

For k denoting any integer, new Integer(k) creates an Integer object which

encapsulates the integer k (actually, class Integer merely has an instance variable of type

int whose value is initialised to k). For p a reference to an object of type Integer,

p.intValue() returns the integer encapsulated by p as a value of type int, and

p.toString() returns it as a string. For p and q references to Integer objects,

p.equals(q) compares the two encapsulated integers for equality, and

p.compareTo(q) tests them for less-than, equality or greater-than. A negative integer is

returned by p.compareTo(q) if the integer in object p is less than that in q, 0 is returned if

they are equal, and otherwise a positive is returned. For example, (new

Integer(2)).compareTo(new Integer(5)) yields a negative number because 2 is

less than 5. Integer.parseInt(s) returns the integer equivalent of string s (s must

consist of digits only, possibly prefixed by + or -). As an example of the usefulness of

Integer, we can use putMany()introduced above to print twenty-five 17’s, as

follows:

putMany(new Integer(17), 25);

Integer objects are immutable, i.e. no methods are provided which change the value of the

encapsulated integer. If you want to effect a change, you have to do so by creating a new

Integer object, as in the following assignment where p is a variable of type Integer:

p = new Integer(p.intValue() + 1);

This assigns to p a reference to a new Integer object representing a value one greater than

the old value. This is clearly cumbersome, and so it is not attractive to use class Integer for

doing arithmetic.

The wrapper classes for double, char, and boolean are called Double, Character,

and Boolean, respectively, summarised in the following table:

Object and Wrapper Classes 27.5

4 Autoboxing & autounboxing

Actually in most situations, you may supply a item of type int where one of type Integer

is expected, and analogously for the other primitive types. The system will automatically carry

out the necessary wrapping (this is called autoboxing although autowrapping would be more

appropriate). For example, the following statements have identical effects (they each print 17 a

total of 25 times):

putMany(new Integer(17), 25);

putMany(17, 25);

In fact, the compiler automatically translates the second statement to the first.

The compiler will automatically unwrap an Integer object that is used where a value of type

int is expected. For example, if myInt references an object of type Integer whose

constituent value is 3, then the statement

int k = myInt + 1

leaves variable k with the value 4. Strictly this is not type correct, but the compiler will

automatically translate it to the following:

int k = myInt.intValue() + 1

This is called auto-unboxing. It is even legal to write

myInt = myInt + 1

But be very sure of what’s really going on here: the compiler supplies the automatic boxing and

unboxing so that the statement is nothing but a neat shorthand for

Double Character Boolean

Double(double) Character(char) Boolean(boolean)

double doubleValue() char charValue() boolean booleanValue()

String toString() String toString() String toString()

boolean equals(Object) boolean equals(Object) boolean equals(Object)

int compareTo(Double) int compareTo(Character) int compareTo(Boolean)

static double parseDouble(

 String)

27.6 Java Programming

myInt = new Integer(myInt.intValue() + 1);

 If you need to carry out other than trivial arithmetic, it is silly to use type Integer – use type

int. Note that it is an error to rely on autounboxing when the Integer argument is null – it

has to be a reference an object of type Integer. Auto-unboxing applies similarly to all the

primitive types.

