
ArrayList © J. M. Morris 28.1

Lists using

ArrayList

1 ArrayList

One of the drawbacks of arrays is that they do not make it easy to accommodate collections of

arbitrary size. We have to commit ourselves to a fixed size when we introduce an array, and

this imposes lots of tedious coding if we are not to abandon the computation should the array

fill up. Java provides class ArrayList to handle all this coding for us. An instance of an

ArrayList is called an array list; you can think of it as an array that may grow as big as it

needs to during program execution. ArrayList is part of the java.util package (which

must be explicitly imported).

ArrayList is parametrised with respect to the type T of its elements, i.e. an array list whose

elements are each of type T has type ArrayList<T>. For example, an array list of strings has

type ArrayList<String>. Throughout, we will use T as the type parameter. The

constructors are as follows:

ArrayList<T>() ArrayList<T>(ArrayList<T>)

new ArrayList<T>()creates an empty list, and new ArrayList<T>(c) creates a list

with the same elements as c in the same order (copies are not made of the items in c, rather the

items are referenced by both c and the newly created list). Examples include (where list is

of type ArrayList<Double>)

ArrayList<String> ws = new ArrayList<String>();

ArrayList<Integer> ns = new ArrayList<Integer>();

ArrayList<Double> ds = new ArrayList<Double>(list);

It is permissible to omit the type in the constructor when it can be inferred. For example, the

preceding examples can be written as

28.2 Java Programming

ArrayList<String> ws = new ArrayList<>();

ArrayList<Integer> ns = new ArrayList<>();

ArrayList<Double> ds = new ArrayList<>(list);

Array lists have indices just like arrays, i.e. the indices run from 0 up. The most fundamental

methods supplied by ArrayList<T> are:

int size()

T set(int, T)

T get(int)

boolean add(T)

String toString()

t.size() returns the number of elements in t. Remember to use size() for array lists and

not length (which is used for arrays) or length() (which is used for strings).

t.set(i,o) replaces the element at position i in t with o, and returns a reference to the

object previously at position i (the returned reference is often ignored). The value of i must be

in the range 0 to t.size()-1. t.set(i,o) is a rough analogue of b[i]=o for b an array

(it is illegal to write t[i]=o for t an array list – you must write t.set(i,o)). t.get(i)

returns a reference to the element at position i in t. t.get(i) is the analogue of b[i] for b

an array. It is illegal to write t[i] for t an array list – you must write t.get(i).

t.add(o) appends o to the end of t. The boolean returned is not of interest and is always

ignored. We can add as many elements as we like, limited only by the available memory.

t.toString() returns a string representation of t (encased in square brackets). Each

element is represented by the string returned by its toString() method.

The following code illustrates the behaviour of the above methods.

ArrayList<String> s = new ArrayList<String>(); // s is empty

s.add("dog"); s.add("cat"); // s: dog, cat

s.add("pig"); s.add("cow"); // s: dog, cat, pig, cow

String word2 = s.get(2); // word2: pig

String word3 = s.set(3, "cat"); // s: dog, cat, pig, cat

System.out.print(word3); // cow appears

System.out.print(s.size()); // 4 appears

System.out.print(s); // [dog, cat, pig, cat] appears

ArrayList<String> t = new ArrayList<String>(s); // t: dog, cat, pig, cat

The enhanced for-each loop can be used with lists, just as for arrays. If c1 is a list (or any

collection) of strings, say, then the following for-each loop may be used:

for (String w: c1) {

}

This causes the body of the loop (represented by above) to be executed once for each w in

ArrayList 28.3

c1 (in the order in which they occur in the list). Each time the body of the loop is executed, w

stands for the element of c1 being processed. The type of w must match the type of the

elements in c1 (here w has type String because c1 is a list of strings).

Example 1: big words

The following program prints a list of the big words in a given text. A word is defined to be

“big” if its length exceeds the average length of all the words in the text. The text is supplied

through the standard input, typically as a text file via redirection. For example, invoking

java BigWords < source.txt

will produce a list of the words in source.txt whose length exceeds the average length of

all the words in source.txt. Any repetitions of words in the input show up in the output.

We use array lists rather than arrays because we will have to store all the words in the input,

and it is convenient to do so without committing to a maximum length.

import java.util.*;

class BigWords {

 public static void main(String[] args) {

 // Read input & compute average length of words

 ArrayList<String> words = new ArrayList<String>(); // for words in input

 int total = 0; // total of all word lengths

 while (!Console.endOfFile()) {

 String s = Console.readToken(); // next word

 total = total+s.length();

 words.add(s);

 }

 int meanLength = total/words.size(); // average word length (truncated)

 // Print big words

 for (String s: words) {

 if (s.length()>meanLength)

 System.out.println(s);

 }

 }

}

The for-each loop could also have been written as follows:

 for (int i=0; i<words.size(); i++) {

 String s = words.get(i);

 if (s.length()>meanLength) {

 System.out.println(s);

 }

 }

28.4 Java Programming



2 Inserting and deleting elements

ArrayList<T> provides the following additional methods, mainly concerned with inserting

and deleting elements.

void add(int, T)

T remove(int)

boolean remove(Object)

boolean contains(Object)

int indexOf(Object)

void clear()

boolean isEmpty()

t.add(i,o) inserts o at position i in t, shifting any following elements one position “to the

right”. The value of i must be in the range 0 to t.size(). t.add(t.size(),o) appends

o to t, i.e. its effect on t is the same as t.add(o). t.remove(i) removes the element at

position i in t, shifting any following elements to the left. A reference to the object deleted is

returned (although it is often ignored by the caller). The value of i must be in the range 0 to

t.size()-1. t.remove(o) removes the first occurrence of item o from list t. If t does

not contain o, t is unchanged. A boolean is returned indicating whether t contained o (the

returned boolean is often ignored).. t.contains(o) returns a boolean indicating whether t

contains o. t.indexOf(o) returns the index of the first occurrence of o in t; it returns -1 if

o is not present. t.clear() removes all the elements from t. t.isEmpty() tests if t is

empty.

The following code illustrates the behaviour of the some of the above methods.

ArrayList<String> s = new ArrayList<String>(); // s is empty

s.add("pig"); s.add("cat"); // s: pig, cat

s.add(1,"dog"); // s: pig, dog, cat

s.add(1,"cat"); // s: pig, cat, dog, cat

boolean b = s.remove("cat"); // s: pig, dog, cat

System.out.print(b); // true appears

s.remove(1); // s: pig, cat

Example 1: longest words

The following program reads the words in a text file, and prints the longest words in the file in

the order of their first occurrence. For example, if the input file contains

 The moving finger writes and having writ moves on

then the output will be

ArrayList 28.5

 [moving, finger, writes, having]

because the longest word in the file has length 6, and the output consists of all the words of

length 6 in the order of their first occurrence. No word occurs twice in the output. The square

brackets in the output aren’t required but are a by-product of our use of array lists. The name of

the text file is passed as a command-line argument.

import java.util.*;

import java.io.*;

class LongWords {

 public static void main(String[] args) {

 Scanner file = null;

 try {

 file = new Scanner(new File(args[0]));

 }

 catch(FileNotFoundException e) {

 System.out.println("File not found");

 }

 ArrayList<String> longs = new ArrayList<String>(); // list of longest words

 int len = 0; // all words in longs have length len

 while (file.hasNext()) {

 String w = file.next(); // next word in input

 if (w.length()>len) { //w is new longest word

 longs.clear(); longs.add(w); // longs contains only w

 len = w.length();

 }

 else if (w.length() == len) { // w’s length is same as those in longs

 if (!longs.contains(w)) // a first occurrence of w

 longs.add(w);

 }

 }

 System.out.print(longs);

 }

}



It is clear that it is much simpler to locate, insert, or delete an element in an array list than in an

array. Remember, however, that this simplicity is only in the writing of the code. Just as much

work has to be done by the machine behind the scenes – it’s just that the coding has been done

for us. In particular, all but the final two methods in the list at the start of this section require

the array list to be scanned, and so the amount of work done by the machine in each case is

proportional to the length of the array list.

There is an additional cost for array lists whose elements are of a primitive type. Elementary

values have to be wrapped up as objects, although this is usually accomplished by automatic

28.6 Java Programming

boxing and unboxing.

Although array lists are simpler to use than arrays, collections of limited size which are subject

to only simple operations may be more easily and cheaply managed using arrays, especially

when the items are elementary values. When performance is not critical, and particularly when

the elements to be stored are not elementary, array lists will usually be preferred.

