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Recursive 

Functions 

1 Recursive functions 

Methods may employ a technique called recursion. We will explain it by writing a function to 

compute factorials. The factorial of a natural number n is defined as 123 ... n. We write n! 

to denote the factorial of n. For example, 3! = 123 = 6, and 5! = 12345 = 120. As an 

aside we mention that n! is the number of ways of laying out n balls in a line where all the balls 

have different colours. The idea of 0! may not be intuitive, but we allow it nonetheless and 

define it to be 1. The defining properties of factorial are: 
 

(i) 0! = 1 

(ii) n! = n(n-1)!  for n>0 
 

For example, property (ii) with n=5 states that 5! equals 54!, which you will easily convince 

yourself is true. Properties (i) and (ii) are called defining properties because it turns out that 

they are sufficient to calculate n! for any natural n (assuming we know how to do subtraction 

and multiplication). To compute 3! for example: 
 

 3!   

=  “property (ii) with n=3” 

 32!   

=  “property (ii) with n=2” 

 3(21!) 
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=  “property (ii) with n=1” 

 3(2(10!)) 

=  “property (i)” 

 3(2(11)) 

=  “multiply out” 

 6 
 

Property (ii) is called a recursive property. By this is meant that the operation being defined on 

the left-hand side (here, factorial) occurs also on the right-hand side. A recursive property 

might at first sight seem to be circular, but this need not be so. All is well if the operation on 

the right hand side is applied to a smaller term than on the left hand side. That is indeed the 

case in (ii) which has factorial n-1 on the right-hand side, and factorial n on the left. The 

importance of the term being smaller is that it is tending towards a term (here, 0!) for which the 

operation is defined without recursion. This ensures that we can “unwind” the recursive 

property as often as it takes to arrive at a non-recursive case (also called a base case). The 

computation of 3! above illustrates this: we applied property (ii) in turn for 3!, 2!, and 1!, after 

which we arrived at 0! for which property (i) applies. After that it only remained to multiply 

out. 

 

In summary, properties (i) and (ii) are defining properties of factorial because (a) there is a rule 

covering every natural argument (in fact, one for 0 and one for positives), and (b) in the 

recursive property (ii), the factorial on the right-hand side is applied to a smaller term than that 

on the left. All this might be no more than interesting mathematics but for the fact that such 

defining properties can be translated directly into Java methods. The following is a method to 

compute factorials: 

 

static int fac(int n) { // factorial n,  n>=0 

 if (n==0) return 1;   

 else return (n*fac(n-1)); 

} 

 

We say that fac() is  recursive because its body contains an invocation of fac(). Let us 

check that fac() really does faithfully encode the defining properties of factorial. We see 

immediately from an inspection of its body that it satisfies the following:  
 

(a) fac(0)  =  1 

(b) fac(n)  =  n*fac(n-1)  when  n>0 
 

 – there is no intelligence being applied in deducing (a) and (b), just a mechanical inspection of 

the text of fac(). Properties (a) and (b) are evidently faithful representations in code of (i) 

and (ii), respectively – just mentally replace fac(0) with 0!, fac(n) with n!, and fac(n-

1) with (n-1)!. That’s it! Having satisfied ourselves at the outset that properties (i) and (ii) 

suffice to compute n!, and now having checked that fac() faithfully encodes (i) and (ii), we 

can relax. The machine will do the rest (we will see how it does so shortly). 
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Example 1: the first few factorials 

The following program prints a table of the factorials of 0, 1, 2, ... 9. 

 

class Factorials { 
         

 static int fac(int n) { // factorial n, n>=0 

  if (n==0) return 1;  

  else return n*fac(n-1); 

 }  
         

 public static void main(String[] args) { 

  for (int k=0; k<10; k++) { 

   System.out.println(k + "! = " + fac(k)); 

  } 

 } 

} 

Example 2: celebrity numbers 

A natural number is called a celebrity number if it is equal to the sum of the factorials of its 

decimal digits. 1 and 2 are trivial celebrity numbers (1!=1 and 2!=2) but a more interesting one 

is 145 (1!+4!+5! = 1+24+120 = 145). The following program finds all celebrity numbers up to 

one million (in fact celebrity numbers are rare – the program discovers just one more). 

 

class Celebrity { 
         

 static int fac(int n) { // factorial n, n>=0 

  if (n==0) return 1;  

  else return n*fac(n-1); 

 }  
 

 static boolean isCelebrity(int n) { // is n a celebrity number, n>0 

  int total = 0; // running total of factorials of digits of n 

  int highN = n; // the high end of n – its digits remain to be fac’d & added 

  while (highN>0) { 

   // extract rightmost digit from highN ... 

   int digit = highN%10; highN = highN/10;  

   // ... and add its factorial to running total 

   total = total+fac(digit); 

  } 

  return (total==n);     

 }  
         

 public static void main(String[] args) { 

  for (int k=1; k<1000000; k++) { 

   if (isCelebrity(k))  

    System.out.println(k + " is a celebrity number"); 

  } 
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 } 

} 

Recursion vs iteration 

Recursion does not give us any extra power in the sense that it does not enable us to write 

programs that we could not have written without it, but it can be an elegant and simple way to 

write some methods. It is an alternative to loops. For example, fac() can be written 

iteratively (i.e. using loops rather than recursion) as follows: 

 

static int fac(int n) {  // factorial n,  n>=0 

 int z = 1; 

 for (int i=1; i<=n; i++) 

  z = z*i; 

 return z; 

} 

 

Recursion applies equally to static and dynamic methods.  

2 Recursion operationally OPTIONAL 

How does the machine implement recursion? Examining the body of a recursive method would 

seem to suggest that the method calls itself, but that is not the way to look at it. A recursive 

method does not literally call itself, but rather the system makes a clone of the method and calls 

the clone. This is the key to understanding recursion operationally: each time the execution of a 

method encounters a recursive call on the method, it makes a clone and calls the clone. The 

clone is identical in all respects to the parent. If the clone in turn encounters a recursive call 

(which is very likely) it makes a new clone and calls it. Eventually (if the method is properly 

written) a clone will compute its result without meeting a recursive invocation, and so without 

cloning, and the answer will be returned to the parent. The parent can then complete its work 

and pass the result back to its parent, and so on. Once a clone completes its work and returns to 

its parent, the clone dies and all memory it occupied is released. For example, suppose the 

statement System.out.print(fac(3)) is executed. This will cause the system to invoke 

fac(3) whose execution can be pictured in the top box above.  

 

 The first box contains the fac() that is invoked as a result of executing 

System.out.print(fac(3)). Parameter n in fac() is given the initial value 3. 

Therefore the else-branch of the if-statement is taken resulting in an invocation of fac(n-

1), i.e. fac(2).  

 

 This causes a clone to be created – the one in the second box – in which parameter n has 

value 2. This looks exactly like its parent and even has the same name. However, it is a 

different method. In particular, its parameter n is a different variable from parameter n in 

the parent. In the parent, n has the value 3 at all times, whereas in the clone n has the value 
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2 at all times. The parent continues to exist while the clone does its job, but in suspended 

animation. The clone takes the else-branch resulting in an invocation of fac(1). 

 

 This causes another clone to be created – the one in the third box. In this clone parameter n 

has the value 1. The original and two clones now exist simultaneously, but the parent and 

the first clone are suspended. This newest clone takes the else-branch resulting in an 

invocation of fac(0).  

 This causes the clone in the fourth box to be created. Now the parent and three clones exist. 

In the latest clone, parameter n has the value 0. 

 The newest clone immediately returns the value 1 to its invoker (clone 2) and dies, 

releasing the space it occupied.  

 Clone 2 (in which n has value 1) now computes n*1 and returns the result 1 to its caller 

(clone 1) and dies. The space it occupied is released. 

 Clone 1 (in which n has value 2) now computes n*1 and returns the result 2 to its caller 

(the original) and dies. The space it occupied is released.  

 The original (in which n has value 3) computes n*2 and returns the result 6 to the 

System.out.println() statement that invoked it, and so 6 is printed. 

3 Ensuring termination 

It is easy to write a recursive function that never terminates, for example: 

 

static int silly(int n) { 

   return silly(n); 

static int fac(int n) {  

 if (n==0) return 1;  

 else return n*fac(n-1); 

} 

fac(3) 

6 

static int fac(int n) {  

 if (n==0) return 1;  

 else return n*fac(n-1); 

} 
static int fac(int n) {  

 if (n==0) return 1;  

 else return n*fac(n-1); 

} 
static int fac(int n) {  

 if (n==0) return 1;  

 else return n*fac(n-1); 

} 

fac(2) 

fac(1) 

fac(0) 
1 

1 

2 

n=3 

n=2 

n=1 

n=0 
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} 

 

Actually, if silly(3), say, is invoked, it will eventually terminate abnormally with a 

message from the system to the effect that it has run out of memory — because each recursive 

call consumes memory in the machine until there is no free memory left. Of course, we would 

never deliberately write a non-terminating recursive function, but we may do so inadvertently 

and it is wise to double-check. A recursive method is guaranteed to terminate if it satisfies the 

following criteria: 
 

(i) The initial call and every recursive call is applied to arguments that are within the 

design range of the method. 
 

(ii) The result is computed for the smallest arguments (the base cases) without recourse to 

recursion.  
 

(iii) Every argument of a recursive call is by some measure smaller than the incoming 

argument. By “smaller” is meant that the argument is at least one step nearer a base 

case. 
 

As an example, we show that fac() meets the three criteria and so we can be satisfied that it 

terminates. As regards design range, fac() is designed on the assumption that the argument n 

satisfies n0. 
 

(i) The argument in the recursive call is n-1 and so we have to be sure that at the point of 

call n-10.  This is indeed so because by assumption n0, and the else-branch of the 

if-statement is taken ensuring n>0 at the point where the call fac(n-1) occurs. 
 

As regards base cases: 
 

(ii) fac(0) is computed without recourse to recursion. 
 

For the recursive case, we take as our measure of the argument the value of n itself:  
 

(iii) We observe n-1 is smaller (i.e. closer to the base case 0) than the incoming n (which 

we know is positive at the point of the recursive call). 
 

It follows that fac(n) terminates provided n satisfies n0. For negative n, fac() does not 

terminate, but it was not designed to handle that case. 

Banana skin: recursion in a loop 

Some beginners apparently get so concerned about ensuring termination that they seek extra 

insurance by placing recursive calls inside a loop! The following is typical: 

 

static int fac(int n) { // factorial of n, n>=0 

 if (n==0) return 1;   

 else { 

  while (n>0) { // Wrong! 

   return (n* fac(n-1)); 

  } 
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 } 

} 

 

This is wrong! Loops rarely occur in recursive methods (at least in the simpler ones 

programmers are likely to meet in everyday programming), and it is exceedingly rare for a 

recursive call to occur inside the body of a loop (as above). If you find yourself writing a loop 

in the body of a recursive method, you may well be going down the wrong track, so think again 

and make sure that that is really what you want to do. Chances are it isn’t.  

 


