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Recursive Design 

1 Designing recursively 

There are three essential steps in designing  a recursive method. The first step is the following: 
 

 1. Write down the header of the method, including a precise description of its 

purpose and design range. 
 

This is very important – you will need to invoke the method as you develop the body, and you 

won’t be able to do that unless you have a method name and know the types of the parameters. 

Suppose, for example, that we want to write a recursive function to compute powers such as 32 

(=9) and 53 (=125). We will confine ourselves to natural exponents (the raised number such as 

the 3 in 53 is called the exponent). The definition of mn is mm ... m (n times). It is standard 

to define  m0 to be 1, although this may not seem intuitive. The header of the method is 
 

static int power(int m, int n) // m to the power n, assuming n>=0 
 

The second step is to consider the base case. Ask yourself: 
 

 2. For what simple values of the arguments can I do what is required without 

recourse to a recursive call?  
 

Typical responses will be for 0 or 1 for integer arguments (more usually 0), and empty strings 

or strings of length 1 for string arguments (usually empty strings). In the case of 

power(m,n), the base case is clearly going to be n=0, for which we will return 1. 

 

The third step is the hardest (but is much harder if you skip the first two steps):  
 

3. For cases other than the base case, how can I  recursively solve a smaller 
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instance of the problem and use that to construct a complete solution. 
 

Returning to the example of power(), we have already taken care of the case n=0, and so we 

know that n>0 when the recursive call happens. A simple property of exponents that you will 

know from school (or will easily convince yourself of) is 
 

 mn  =  mmn-1  for n>0 
 

Expressed in terms of power() this is: 
 

 power(m,n) = m*power(m,n-1) for n>0 
 

The call power(m,n-1) is within the design range because we have n>0 at the point of call, 

and so n-10. Furthermore, n-1 is closer to 0 than n, and so we know the recursion will 

terminate. That’s all there is to it! If the recursive call is applied to a smaller instance of the 

problem, and you have supplied a base case, you have nothing more to worry about. This is the 

key to mastering recursion – don’t pursue the recursive call, but trust that it will work as long 

as you have applied it to a smaller instance of the problem. Finally, we assemble the 

constituent parts: 

 

static int power(int m, int n)  { // m to the power n, assuming n>=0 

 if (n==0) return 1; 

 else return m*power(m,n-1); 

} 

Example 1: counting letters 

We write a function to count the number of letters in a given string s. For example, the number 

of letters in “May 5th 2002” is 5, and the number of letters in “2002” is 0. 

 

static int numLetters(String s)  

// Number of letters in s, s not null 

 

For a base case, it is clear that we can solve the problem directly if s is empty, i.e. if 

s.length() is 0 – the result is obviously 0 because the empty string has no letters. For the 

recursive case, we can assume s is non-empty because empty strings are handled by the base 

case. Hence s has a character in position 0 (s.charAt(0)). Let us call the string obtained 

from s by dropping its first character the tail of s. Now observe that the number of letters in s 

is equal to the number of letters in the tail of s, plus 1 if the first character is a letter. How may 

we find the number of letters in the tail of s? By invoking 

numLetters(s.substring(1)) – just read the header and descriptive comment of 

numLetters()!  Despite the fact that numLetters() is the method we are in the process 

of writing, the invocation is effective because the new argument is smaller than the incoming 

one – the tail of s is clearly smaller that s itself, i.e. it is closer to the base case of the empty 

string. 

 

static int numLetters(String s) { 
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// Number of letters in s (s not null) 

 if (s.length()==0) return 0; 

 else { 

  if (Character.isLetter(s.charAt(0))) 

   return 1 + numLetters(s.substring(1)); 

  else return numLetters(s.substring(1)); 

 } 

} 

 

As an example of using numLetters(), the following program displays the number of 

letters in a line of text entered at the keyboard. 

 

class NumLetters { 
 

 static int numLetters(String s) { 

  ..... 

 } 
 

 public static void main(String args[]) { 

  System.out.print("Enter a line: "); 

  String s = Console.readString(); 

  System.out.println("Number of letters = " + numLetters(s)); 

 } 

}  

Example 2: counting 9’s 

We write a function to determine how many 9’s occur in the decimal representation of a 

(natural) number. For example, the number of 9’s in 39791 is 2. 

 

static int count9(int n) { 

// Number of 9’s in decimal representation of n, n>=0 

 

For example, count9(39791) should return 2, and count9(354) should return 0. For a  

base case, we observe that we can solve the problem directly if n is a single digit, i.e. if n<10. 

If single-digit n is 9 the result is 1, and otherwise the result is 0. For the recursive case, we 

know that n is at least 10 (because smaller values are dealt with as base cases) and so it has at 

least two decimal digits. We can therefore break n into two smaller parts, count the number of 

9’s in each part, and return the sum of the two counts. How should we break n into parts – any 

way we like. The simplest is to take the rightmost digit (n%10) as one part, and all but the 

rightmost digit as the other part (n/10). How do we count the number of 9’s in each part? By 

invoking count9() – this is effective because both parts are smaller than the original number 

n. 

 

static int count9(int n) { 

// Number of 9’s in decimal representation of n, n>=0 
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  if (n<9) return 0; 

  else if (n==9) return 1; 

  else return count9(n%10) + count9(n/10); 

} 

 

Observe that the termination criteria are met:  
 

(i)  The method is designed to take natural arguments. The arguments of the recursive calls, 

n%10 and n/10, are clearly at least 0. 

(ii)  If n is small, which in this case means n<10, the result is computed directly. 

(iii)  The arguments of the recursive call, n%10 and n/10, are smaller than n because n10 

holds at the point of recursion. 

Example 3: minimum in array  

We want a recursive function to compute the minimum value in a (non-empty) array of 

integers: 

 

static int min(int[] w)  

// Minimum in w, assuming w.length>0 

 

For example, if array w is introduced thus: 
 

int[] w = {4, 2, -3, 2, 5, 9, 3, -1, 8, 6}; 
 

then min(w) should return -3.  

 

If w has just one element then w[0] is clearly the minimum. For the recursive case, we know w 

has length 2 or more, so imagine it as being composed of two parts. This is a good way to think 

about the problem because (as a moment’s reflection will convince you) the minimum in w is 

the minimum of the minima in each of the two parts. For example, the minimum in the list 4, 2, 

-3, 2, 5, 9, 3, -1, 8, 6 can be got by finding the minimum in the first half 4, 2, -3, 2, 5 (that’s -3) 

and the minimum in the second half 9, 3, -1, 8, 6 (that’s -1), and then taking the minimum of 

the respective minima -3 and -1, yielding -3. Here we have broken w into two equal parts, but 

actually the relative sizes of the parts doesn’t matter. In coding it is easiest to let the first part 

consist of w[0] only, and the second part consist of w[1..]. The minimum in the first part is 

trivially w[0] – there is just one element and so it must be the minimum.  

 

Let m denote the minimum in the second part. How can we compute m? We would like to 

invoke min() recursively, but that seems very difficult. We propose instead to change the 

specification of the method by the addition of an extra parameter. The revised method will find 

the minimum in a given non-empty tail of an integer array, where by “tail” we mean any right-

hand segment of the array. The method we have in mind is: 

 

static int minTail(int[] w, int i)  

// Minimum in w[i..], 0<=i<w.length 
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For example, if array w is introduced thus: 
 

int[] w = {4, 2, -3, 2, 5, 9, 3, -1, 8, 6}; 
 

then minTail(w,4) returns -1 (because -1 is the smallest value in w[4..], i.e. 5, 9, 3, -1, 

8, 6),  and minTail(w,0) returns -3, i.e. the minimum in w. In designing recursive methods, 

it is not uncommon to introduce an extra parameter solely to facilitate the recursion. Indeed, it 

is quite common in problems concerning arrays. 

 

For the revised problem, we look for a base case. Clearly if the tail w[i..] has just one 

element (i.e. i=w.length-1) then its minimum is w[i]. For the recursive case, we know 

w[i..] has length 2 or more. Viewing it as being composed of two parts, the minimum in 

w[i..] is again the minimum of the minima in each of the two parts. We let the first part 

consist of w[i] only and the second part consist of w[i+1..]. The minimum in the first part 

is evidently w[i], and the minimum in the second part is just minTail(w,i+1) – this is 

effective because w[i+1..] is a smaller tail of w than w[i..], i.e. it is closer to the base 

case of i=w.length-1. The solution to the problem is: 

 

static int min(int[] w)  { // Minimum in w, assuming w.length>0 

 return minTail(w,0);  

} 
 

static int minTail(int[] w, int i) { // Minimum in w[i..], 0<=i<w.length 

 if (i==w.length-1) return w[i]; 

 else {  

  int m = minTail(w,i+1);  

  if (w[i]<m) return w[i]; 

  else return m; 

 } 

} 

 

Previously we would have solved this problem using iteration. Actually recursion in this case is 

not any easier to code than iteration, and the recursion is computationally a little more 

expensive. Nevertheless, it is a simple illustrative example of generalising a problem to 

facilitate recursion.  

2 Recursive procedures 

Procedures may be recursive, and their design is no different from that of functions. We 

illustrate with some examples. 

Example 1: verbalising a number 

We write a program which reads a natural number and prints it in words digit by digit. The 

following illustrates a typical input and output: 
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Enter a natural number: 3546 

three five four six 
 

The core of the program will be a recursive method with the following heading: 

 

static void putVerbal(int n)  // print decimal digits of n in words, n>=0 

 

For the base case, we can take values of n less than 10 because it is easy to print the word 

equivalent of a single digit. For the recursive case, we know that n is at least 10 and so has at 

least two decimal digits. We break n into two smaller parts and verbalise the two parts in turn – 

this is effective because both parts are smaller than the original number n. For the left part we 

take all but the rightmost (i.e. least significant) digit of n, and for the right part we take the 

rightmost digit. The program is: 

 

class Verbalising { 
        

 static void putVerbal(int n) { // print decimal digits of n in words, n>=0 

  if (n<10) output(n); 

  else { 

   putVerbal(n/10);  putVerbal(n%10); 

  } 

 }  
    

 static void output(int n) { // print n as a word, 0<=n<10 

  String[] digit = { "zero", "one", "two", "three", "four",  

       "five", "six", "seven", "eight", "nine"}; 

  System.out.print(digit[n] + " "); 

 }  
    

 public static void main(String[] args) { 

  System.out.println("Enter a natural number: "); 

  int n = Console.readInt(); 

  putVerbal(n); 

 } 

}  

 

putVerbal() remains valid if  the second recursive call – putVerbal(n%10) – is 

replaced with output(n) and it is computationally a little cheaper because it eliminates one 

method invocation.  

 

The output could as easily be spoken as printed. It only requires that digit[n] be the name 

of a clip that speaks n, and that we play it rather than print it. The following version of 

output does that using .wav clips under Windows, and utilising some of the Java library’s 

audio classes. The program’s directory should contain sound clips 0.wav, 2.wav, 3.wav, ... , 

9.wav (java.sound.sampled.* and java.io.* must be imported). 
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 static void output(int n) { // speak n, 0<=n<10 

  try {  

   String[] digit = { "0.wav", "1.wav", "2.wav", "3.wav", "4.wav",  

       "5.wav", "6.wav", "7.wav", "8.wav", "9.wav"}; 

   Clip clip = AudioSystem.getClip(); 

   AudioInputStream ais =  

     AudioSystem.getAudioInputStream(new File(digit[n])); 

   clip.open(ais);  clip.loop(0); 

   Thread.sleep(clip.getMicrosecondLength()/1000); // wait till clip ends 

  } 

  catch (Exception e){System.out.println("Oh!Oh!");} 

 } 

Example 2: Scanning an array 

We write a recursive procedure which prints the positive elements in a tail of an integer array:  

 

static void writePos(int[] w, int i)  

// Display the postives in w[i..], 0<=i<=w.length 

 

For example, if array w is introduced thus: 
 

int[] w = {4, -2, -3, 2, -5, 9, 3, -7, 8, -6}; 
 

then writePos(w,4) displays  9 3 8. writePos() is similar in most respects to the 

recursive function which computes the minimum in the tail of an array. However, on this 

occasion the base case is the empty tail for which no action is taken – the empty tail has no 

elements and therefore it has no positive elements.  

 

static void writePos(int[] w, int i) { 

// Display the postives in w[i..], 0<=i<=w.length 

 if (i<w.length) {  

  if (w[i]>0) System.out.print(w[i] + " "); 

  writePos(w,i+1); 

 } 

} 

 

The following trivial program illustrates the use of writePos(): 

 

class WritePos { 
 

 static void writePos(int[] w, int i) { 

  .....  

 } 
 

 public static void main(String args[]) { 

  int[] w = {4, -2, -3, 2, -5, 9, 3, -7, 8, -6}; 
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  writePos(w,0); 

 } 

} 

 

The program displays 4 2 9 3 8.  

Example 3: towers of Hanoi 

Towers of Hanoi is a game for one. We are given three poles and a number of discs, all of 

different diameters, with holes in their centre. All the discs sit on the left pole in order of 

increasing size (downwards). The game consists in attempting to move all the discs to the 

middle pole, one disc at a time. Discs may only be in transit or resting on one of the three poles. 

The constraint that makes the game non-trivial is that at no stage may a disc rest on a smaller 

disc. A solution to the problem for three discs is illustrated. The outline program below 

generates a solution to the Towers of Hanoi problem for any number of discs, and shows a 

sample output for three discs (the missing details will be supplied shortly): 

 

class Hanoi { 
 

 static void moveHanoi(int n, String pA, String pB, String pC)  { 

 // Move n discs Hanoi-style from pole pA to pole pB via pole pC 

  ..... 

 } 
 

 public static void main(String[] args) { 

  moveHanoi(3, "Pole 1", "Pole 2", "Pole 3"); 

 } 

} 
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Move top disc from Pole 1 to Pole 2 

Move top disc from Pole 1 to Pole 3 

Move top disc from Pole 2 to Pole 3 

Move top disc from Pole 1 to Pole 2 

Move top disc from Pole 3 to Pole 1 

Move top disc from Pole 3 to Pole 2 

Move top disc from Pole 1 to Pole 2 

 

We will implement moveHanoi() recursively. First, we write down the specification. We 

expect that although initially pA and pB are empty, this state of affairs will not continue as 

discs get moved about. However, each pole will contain a Hanoi tower at all times. By Hanoi 

tower we mean a (possibly empty) stack of discs such that no disc rests on a smaller one. In 

order to move n discs from pA to pB via pC, it would be extremely helpful, if not essential, for 

the discs on pA to be smaller than those on pB and pC. This is true initially in a trivial way 

because pB and pC start off empty; as we move discs about we should see to it that it remains 

so. We write the header and specification: 

 

static void moveHanoi(int n, String pA, String pB, String pC)   

// Move the top n discs on pole pA to pole pB, one disc at a time. Poles pA,   

// pB, and pC contain Hanoi towers initially,  and must do so at all times. 

// Pole pA has (at least) n discs, n>= 0. The top n discs on pole pA 

//  are smaller than the discs on poles pB and pC. 

 

Although we are asked initially to move all discs from pA, it is possible that in some phases of 

the game we may want to move only some of them. We have anticipated that in wording the 

specification (we say pA has at least n discs, and that we are to move the top n discs). 

 

The base case could not be simpler: if n is 0 there is no work whatsoever to be done.  

 

For the recursive case, we can start by moving the top n-1 discs from pA to pC using pB as a 

temporary. This can be achieved by a recursive call because n-1 is less than n (in the sense of 

being closer to the base case). This will leave pB in its original state and hence still containing 

a Hanoi tower. Pole pC contains a Hanoi tower because it has only gained the top n-1 discs of 

pA which we know are smaller than those originally on pC.  

 

The preceding move exposes what was the n’th disc on pA and is now its top disc. We move it 

to its final resting place on pB. Pole pB continues to have a Hanoi tower because the top n 

discs originally on pA, in particular the n’th one, are smaller than the discs on pB.  

 

It remains to move the n-1 discs now on pC to pB. We need a temporary pole to help in this, 

and the only candidate is pA. We can use pA provided that the discs we might place on it are 

smaller than those already on pA. But that will indeed be the case because the added discs will 

be (at most) the top n-1 discs currently on pC, and these were formerly the top n-1 discs on 
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pA. Moving the top n-1 discs from pC to pB can be done recursively because n-1 is less than 

n. The complete solution is now remarkably simple to express as a Java method: 

 

static void moveHanoi(int n, String pA, String pB, String pC)  { 

 if (n>0) { 

  moveHanoi(n-1, pA, pC, pB); 

  System.out.println("Move top disc from " + pA + " to " + pB); 

  moveHanoi(n-1, pC, pB, pA); 

 } 

} 

3 When to use recursion 

Recursion is an alternative to looping which happens to be very convenient for some problems 

(but not for all). If there is no compelling reason to use recursion it is better to use loops. Loops 

are usually easier to write, and are computationally somewhat cheaper. However, there are 

many problems in computing for which a recursive solution is natural and simpler than an 

iterative one. An example is the method above for writing the decimal digits of a natural 

number in words (as an exercise, you might try writing a non-recursive version), and the 

Towers of Hanoi problem. Another example, and a very important one, is a fast sorting 

algorithm called Quicksort. 


