Fast Sorting

1 3-way partitioning

Later we will make a very fast method for sorting an array, but first we tackle a problem that
will turn out to be an important stepping stone. Given int[] b = new int[1000], duly
initialised, we want to rearrange b so that all the negative elements occur before all the zeros,
which in turn appear before all the positives. For example, if b at the outset is, say

310 |-1]-2[4]... -4 10

then finally we want something like:

2(-11-4].... 0(0 |.... 4 13

The order of the negatives doesn’t matter, just as long as they all occur in a block on the left,
and similarly we only ask of the positives that they all end up in a block on the right. This may
not seem a terribly interesting problem, but put that aside for a short while.

To design the program we do a thought experiment. We imagine that we have written the
program and it is executing. Then we freeze-frame it in mid-flight and ask ourselves: what does
the array look like? The following seems likely:

32.2 Java Programming

0 i 3 k 1000
p: <0 =0 ? >0

In words, we imagine the array as consisting of four partitions: b [0..i-1] contains only
negatives, b[i..j-1] contains only zeros, b[k..999] contains only positives, and
b[j..k=1] contains a mixture. Other scenarios may be possible, but we’ll pursue this one
which we call P (for “picture”). P will be the invariant of the loop we’re trying to write —
“invariant” because we aim to keep it true throughout the execution of the loop. The range of
the indices 1, 7 and k is 0<i<35<k<1000.

Initially, the partition of unknowns (marked ?) is co-extensive with the entire array (because at
the outset no elements have been examined) and the other partitions are empty. Hence initially
we will have 1 =0, j =0 and k = 1000. In short, the following assignments establish P:

inti=0;int j=0;int k = 1000;

The program should finish when the central partition is empty, i.e. when j = k, because then
every element must lie in its designated partition. So the program will have the shape

inti=0;int j=0;int k = 1000;
while (j!=k) {

“make progress, staying faithful to P"
}

What is “progress”? Initially j and k are far apart, and at the end they are equal. Hence we
make progress if each iteration of the loop either increments 5 or decrements k (or both). This
means, in essence, that we have to move an element from the partition of unknowns to one of
the others, according to whether it’s negative, zero, or positive. The obvious element to
examine is either p or g as indicated below (p and g denote the values of b[j] and b [k-11,
respectively):

0 i] k 1000
P: <0 =0 |P 2 q >0

Q) To increment 5, we require p = 0 if we are to maintain P.

(i) We can also contrive to increment j if p <0, as follows. We first swap p with b [i],
and increment i — this ensures b[0..1i-1] continues to contain negative only. As
b [j] now contains O we are back at the preceding case and so increment ;.

The problem remains of how to proceed when p>0 and here it takes a little insight. Observe
that if now we swap p and g, we establish b [k-1]>0, because b [k-11] is now p which we are
assuming is positive. Hence we have the final case:

Fast Sorting 32.3

(iii) If p>0 we maintain P if we swap p and g and decrement k.
So the complete code is:

inti=0;int j=0;int k =1000;
while (jl=k) {
if (b[j1==0) j++; // case (i)
else if (b[j1<0) {
int +=b[i]; b[i]=b[j] b[j1=1: // case (ii)

i++; j++,'

}

else { // case (iii)
k-
int t= b[j1; b[j] = b[k]; b[k] = *:

}

}

The problem we have solved is called partitioning an array. Elements are moved into some
partition according to whether they are less than 0, equal to 0, or greater than 0; we call O the
pivot element of the partition.

Two generalisations

We make two simple generalisations. Firstly, we prefer to partition not the entire array but a
segment delimited by indices 1o and hi, say, i.e. we partition b[lo..hi-1] where
0<10<hi<1000. If 10=0 and hi=1000 then in effect we partition the entire array. Secondly,
instead of partitioning with 0 as pivot, we use an arbitrary integer x. In summary, we want to
rearrange b[lo. .hi-1] so that it finally looks like:

0 lo hi 1000
<X =X > X
N -~ N ~ 2N ~ J
unchanged partitioned unchanged

The changes to the code are trivial:

// Partition b[lo..hi-1] with pivot x
int i =lo; int j = lo; int k = hi;
while (jl=k) {
if (b[j]::x) it
else if (b[j}x) {
int ¥ = b[i]; b[i] = b[j]. b[j]1=t:

i++; j++;

32.4 Java Programming

else {
k--;
int t= b[j1; b[j] = b[k]; b[k] = *:

2 Quicksort

Quicksort is a very fast algorithm for sorting an array. It relies on the following property of
lists:

Let s1 and s2 be lists (of integers, say) such that
all elements in s1 are no greater than all elements in s2.
If sland s2 are sorted, so is the combined list comprised of s1 followed by s2.

For example, in the following two lists observe that no value in the left hand list exceeds any
value in the right hand list:

6454 87698

First sort the left hand list without examining or changing the right hand one:
4456 876938

Now sort the right hand list without examining or changing the left hand one:
4456 67889

and observe that the entire line is sorted. Indeed, the same property holds for any number of
lists: if each list contains only values that do not exceed the values in the list to its right, then
the concatenation of all the lists is sorted if the constituent lists are sorted individually. We can
exploit this property to make a recursive sorting algorithm based on partitioning. Suppose we
want to sort the sequence:

54362968451

We first partition it using as pivot the first element, say (here 5). This results in a sequence
consisting of three partitions:

34214 55 6896

— 5

<5 =5 >5

The order of the numbers in each partition is not significant. By the above property of lists it
only remains to sort the left and right partitions. How? Recursively, of course! For the
recursion to work the sequences we sort recursively must be smaller than the original sequence,
which is clearly the case here. Additionally, we have to deal with small sequences explicitly.

Fast Sorting 325

But that’s easy, because sequences of length 0 or 1 are sorted for free.
The code follows.

static void sort(int[1b){ // Sort b
quickSort(b, O, b.length);
}

static void quickSort(int[] b, int lo, int hi) {
// Sort b[lo..hi-1], O<=lo<=hi<=b.length
if (hi-lo >=2){// b[lo..hi-1] has at least 2 elements
int x = b[lo];
// Partition b[lo..hi-1] with pivot x
int i = lo; int j = lo; int k = hi;
while (j!=k) {
if (b[jI==x) j++:
else if (b[j}x) {
int +=b[i]; b[i]=b[j] b[j1=1:

i++; J++;
}
else {

k--;

int t= b[j: b[j] = b{K]; b[K] = t:
}

}
// sort b[lo..i-1] and b[j..hi-1]

quickSort(b, lo, i); quickSort(b, j, hi):
}
}

Quicksort is very efficient indeed, so much so that it will sort large arrays in only a second or
two in comparison to the many hours that selection sort takes. In some situations it may
perform as poorly as selection sort, but these are few and far between (oddly enough, it is more
likely to perform poorly when the array is nearly sorted to begin with). It is the preferred sorting
methods in industrial practice. However, for sorting small arrays in non-critical software
components, selection sort is acceptable and is often used because it is simpler to code.

3 Optimisations

Quicksort is a very fast algorithm, but the speed can drop off if partitioning leads to left and
right partitions of widely differing sizes (e.g. where the left partition is very small and the right
is very large). This happens if the chosen pivot (x in the algorithm above) turns out to be one of
the smaller or larger values in the segment being partitioned. Empirically, we find that the
chances of this are greatly reduced if we choose as pivot the “middle of three” values, e.g. the

32.6 Java Programming

middle value from b[lo], b[hi],and b[(lo+hi) /2)]. SO we might replace int x =
b[lo]; with, for example,

int x = b[lo]; int y = b[hi-1] ; int z = b[(lo+hi)/2];
if (y>z){intt=y y=zz=1%}//yz
if (x<y) x =y else if (x>z) x =z

Observe also that the order of the two recursive invocations is insignificant: quickSort ()
still works if we recursively sort the right partition followed by the left partition, or vice versa.
We can therefore choose to sort the smaller of the two partitions first, i.e. we can replace the
preceding pair of statements with

if (i-lo<hi-j) { // left partition smallest -- sort first
quickSort(b, lo, i); quickSort(b, j, hi);

}

else { // right partition smallest -- sort first
quickSort(b, j, hi): quickSort(b, lo, i);

}

This has the effect of ensuring that the number of recursive calls that are alive at any one time
(and therefore the number of clones of quicksort occupying memory) is kept to a minimum.

Further optimisations are commonly done.

