Running Time of
Methods

1 Running time of methods

The addition of two numbers (of type int, say) on a machine takes a certain amount of time.
The actual time taken depends on the machine, but a typical time for a good desktop machine
might be, say, 10 nanoseconds. A nanosecond is one billionth of a second, and is abbreviated as
ns. Other primitive operations such as multiplying or comparing two numbers, or and’ing two
booleans, similarly take about 10 ns to complete. The following table gives some examples of
the time to evaluate expressions:

Expression Time to evaluate (ns)
n*3 10
(n+3) * (n+3) 30
(100<n*n) && (n*n<=1000) 50

Note that the time to carry out primitive operations on integers does not depend on how big or
how small the number is: it takes as long to add 5 and 7 as is does to add 1265467 and 96785.

Invoking a method takes time, typically about 50 ns plus 10 ns per parameter (in addition to the
time to evaluate arguments). A return statement takes about 50 ns, plus the time taken to
evaluate any expression returned (the final action in a procedure is always a return, even if

Java Programming © Joseph M. Morris 33.1

33.2 Java Programming

there is no explicit return statement). For expensive machines, all these figures can be divided
by a factor of 10 or more, and for more modest machines they can be multiplied by 10 or more.
The total time for a method (or any piece of code) to run to completion is called its running
time, (or execution time, or time cost, or simply cost). Consider the following method, for
example:

static int foo(int n) {
return (n*n+1)*(n*n+1);

}

Its running time is 60 ns to invoke the method (50 ns set up time, plus 10 ns for the single
parameter), plus 50 ns for three multiplications and two additions, plus 50 ns for the return
statement. That amounts to 160 ns in total. This will vary according to the machine on which
the program runs. Note that it does not depend on the value of the argument: for example, the
time to evaluate foo (1) isthe same as the time to evaluate foo (97).

Assignment statements take 10 ns plus the time to evaluate the expression on the right-hand
side. For example, the time taken to execute x=x*x+1 is 30 ns (10 ns each for *, +, and =).
Array indexing (subscripting) takes 50 ns. For example, w[i+1]=x takes 70 ns (10 for +, 50
for [1, and 10 for =), as does x=w [1+1]. The time taken to execute a sequence of statements
is the sum of the times to execute them individually. Consider the following alternative coding
of foo (), for example:

static int foo2(int n) {

int temp = n*n+1;
return temp*temp;

The running time of foo2 (n) is 150 ns — it is marginally faster than foo (n) because n*n+1
is evaluated just once.
The time taken to execute an if-statement

if (expr) then stmtsT else stmtsF

is the time to evaluate expr plus the time to execute stmtsT if expr yields true, or
stmtsF if expr yields false. For example, the time to execute

if (x>0) then x=1; else x = x*x;
is 20 ns if the boolean yields true (10 ns for > and 10 ns for the assignment) and 30 ns

otherwise (10 ns for >, 10 ns for *, and 10 ns for the assignment). It frequently turns out in
practice that each branch of an if-statement takes roughly the same amount of time to execute,

Running Time 33.3

as in the preceding example. When that is the case, we take the cost of the if-statement as the
cost of the slowest branch. For example, we would usually say that the cost of the preceding if-
statement is 30 ns. Although this may lead to a slightly pessimistic view of the running time,
the error is negligible.

Declarations of variables take no time, unless the variables are initialised in which case they are
costed as assignments.

We have made a minor simplification in assuming that the primitive operations each take the
same amount of time. In real machines there are some small differences: multiplication of reals,
for example, would typically take a bit longer than multiplication of integers. It will become
clear later that the simplification we have made is insignificant.

2 Running time of loops

Simple Loops

The running time of a while-loop is more difficult to measure because it depends on how many
times the loop body is executed. Suppose that the body of while (expr) {stmts} is
executed k times. Then its running time is k times the time to execute stmts, plus k+1 times
the time to evaluate expr. Consider, for example, the following code:

i=z0:s5=0;
while (i<100) {
S = s+i*i; i= i+l;

}

Observe that the body of the loop is executed 100 times. The execution time of the code is 20
ns for the initial two assignments, plus 100x50 ns for the loop body, plus 101x10 ns for the
boolean expression, giving a total running time of 6030 ns.

It is not usual that we can tell by inspection how many times the loop body is executed.
Consider method squares (n) below which computes 12+22+32+...+n2 (for example,
squares (3) yields 14):

static int squares(int n) { // return 1*1+2*2+3*3+.. +n*n, O<=n
intfi=0;ints=0;
while (i<n) {
i =i+l; s = s+i*i;
}

return s;

33.4 Java Programming

Observe that the time taken depends on the value supplied for parameter n. If n is 10, say, the
loop body is executed 10 times, whereas if n is 1000 it is executed 1000 times. Clearly any
measure of its running time will be an expression in which n occurs. In fact the execution time
is 50 ns (invocation) plus 10 ns (parameter) plus 20 ns (initial assignments) plus (n+1)x10 ns
(boolean expression) plus nx50 ns (loop body) plus 50 ns (return), giving a total running time
of 140+60n ns. For example, the running time of squares (100) is 140+60x100 ns which is
6140 ns, whereas the running time of squares(1000) is 140+60x1000 ns which is 60140 ns.
Evidently, if we increase the argument by a factor of c, the running time is also increased by a
factor of c. We sometimes express this more informally as “double the argument, double the
running time”.

We can discover the running times for the machine on our desktop empirically. We have no
hope of measuring times that are minute fractions of a second, but we overcome this by
invoking the method a million times, say, and dividing the elapsed time by a million. A stop-
watch suffices for reading the start and end-times, but it is easier to use the following method
from class System:

static long nanoTime()

System.nanoTime () Yields the elapsed time in nanoseconds since some base time (a
nanosecond is one billionth of a second, and is abbreviated as ns). Note that the return type is
long, the 64-bit integer type. The following is a program to measure running times of
squares ():

class TimeMethod {

static int squares(int n) { ...

}

public static void main(String[] args) {
int arg = 100; // method will be timed for argument arg
int numCalls = 100000; // number of invocations of method
long startTime = System.nano Time();
for(int i=0; i<=numCalls; i++)

squares(arg);

long endTime = System.nanoTime();
long runningTime = (endTime-startTime) /numCalls;
System.out.printin(runningTime + " nanosecs");

}

}

Sample timings on a basic desktop machine (call it Machine A) are roughly 1400 ns for
squares (100) and 14000 ns for squares (1000. Although Machine A is evidently faster
than the ideal machine for which we are calculating timings, it nevertheless behaves in
accordance with the theoretical analysis, differing only by a constant factor (the speedup factor

Running Time 335

being about 4.4 regardless of the argument). Expressed another way, the relationship between
argument and running time is the same in both cases: doubling the argument of squares ()
doubles the running time.

A user’s program can be temporarily suspended by the operating system when it must attend to
other matters (such as monitoring communications on the network to which it is connected). In
order to factor out time lost during any suspensions, you should confirm empirically
determined running times by repeating the experiment a few times.

Nested loops

Consider method allSquares () below which returns an array of sums of squares. For
example, an invocation of al1Squares (5) returns an array of five elements as follows:

0 1 5 14 30

Component k of the array contains 02+12+..+k2. For example, component 3 contains
02+12++22+32, i.e. 14.

static int[] allSquares(int n) {
// return sqrs[0..n-1] , n>0, where sqrs[k] equals 0*0+1*1+2*2+.. +k*k
int[] sqrs = new int[n];
intk=0;
while (k<n) {
sqrs[k] = squares(k); // running time not constant here!
k = k+1;
}

return sqrs;

Observe that the loop body includes an invocation of squares (k) whose running time
depends on the value of k (the higher the value of k, the greater the running time of
squares (k)). As a consequence, the running time of the loop body, i.e.

sqrs[k] = squares(k);
k = k+1;

IS not constant but increases with each successive iteration. For example, on the first iteration k
has the value 0 and we calculate the running time to be 220 ns (50 for [], 10 for =, 140+60x0
for squares (0), 10 for =, and 10 for +), whereas on the 101st iteration k has the value 100
and the running time turns out to be 6220 ns. We say a loop is simple if the running time of its
body is constant. The loop in all1Squares () is not simple. A loop with a nested loop, or
which invokes a method that employs a loop (as in the case of all1Squares()), is rarely
simple.

33.6 Java Programming

The running time of allSquares (n) turns out to be 240+200n+30n2 ns (the detailed
calculations are given later). For n=1000, the cost is 30200240 ns or about 30 ms. Projected
running times for other values of n are shown below, together with empirically measured
running times for Machine A.

n 1000 2000 10000
Theoretical machine 30 ms 120 ms 3000 ms
Machine A 7 ms 27 ms 700 ms

Naturally the actual timings differ on the two machines, but the speedup factor is roughly the
same at about 4.4 for all values of n. Observe also in both cases that if we multiply the
argument by a factor of ¢, we multiply the running time by ¢2. For example, the running time of
allSquares (2000) is about 4 times the running time of al1Squares (1000), and the
running time of allSquares(10000) is about 25 times the running time of
allSquares (2000).

The detailed calculation of the running time of all1Squares (n) follows. It can be omitted
without loss of continuity. The running time of the loop body is 220+60k ns, made up of
140+60k ns for squares (k) plus 80 ns for the other operations. Adding in 10 ns for the
evaluation of the boolean expression, the cost of each iteration is 230+60k ns. The loop body is
executed for k ranging from 0 to n-1, and so its total cost is:

(230+60x0) + (230+60x1) + (230+60x2) + ... + (230+60x(n-1))
= 230xn + 60x(1+2+ .. +(n-1))
= 230n + 60x(n(n-1)/2) (we use the fact that 1+2+..(n-1) = n(n-1)/2)
= 230n + 30(n2-n)
= 200n + 30n?

For the total running time of al1Squares (n) we add in the final evaluation of the boolean
expression (10 ns), the invocation time (60 ns), the time to execute the return statement (50 ns),
the assignments to variables k and sgrs (20 ns), and the cost of invoking new. A typical cost
of invoking new is 100 ns. Adding up, the total execution time is 240+200n+30n2 ns.

3 Algorithm vs machine

The running time of a method which performs a certain function depends on both the speed of
the machine and the quality of the coding. A method will run faster on a faster machine, and
two different methods that perform the same function will have different running times on the
same machine. More often than not, it turns out that the quality of the coding is more
significant than the quality of the machine. For example, the following method has the same
behaviour as al1Squares () which was presented in the preceding section:

static int[] allSquares2(int n) {

Running Time 33.7

// return sqrs[0..n-1] , n>0, where sqrs[k] equals 1*1+2*2+, .+k*k
int[] sqrs = new int[n];
sqrs[0] = O;
intk=1;
while (k<n) {
sqrs[k] = sqrs[k-1]+k*k;
k = k+1;
}

return sqrs;

In this version, the running time of the loop body

sqrs[k] = sqrs[k-1]+k*k;
k = k+1;

is constant (in fact, 160 ns). Using the fact that the loop body is executed n-1 times, we easily
calculate the running time as 120+170n ns. Some running times for various values of n are
given in the table below in microseconds (a microsecond is one millionth of a second,
abbreviated ps).

n | 1000 2000 10000
Theoretical machine 170 us | 340 us 1700 ps
Machine A 44 us 86 us 443 ps

First observe that experiment agrees with theory, allowing for a speedup factor of course. The
speedup factor here is about 3.9. That this differs from previous speedup factors is to be
expected as different operations will have different speedup rates. For example, addition of
reals could be 10 times faster on one machine than on another, whereas multiplication might be
only 5 times faster. Hence the speedup of a method that uses additions only will be greater than
one which uses multiplications.

More importantly, observe that although allSquares2 () does the same job as
allSquares (), it is much faster. Indeed the speed gain is of a different quality than the
speed gain achievable with a faster machine. A fast machine will speed up all1Squares (n)
by a constant factor, regardless of the value of n. The improved coding in al1Squares2 (n),
however, speeds up the computation by a factor that increases as n increases, and the rate of
increase is dramatic. For n equal to 1000, 2000, and 10000 in turn, allSquares2 (n) Iis
faster than al1Squares (n) by a factor of about 175, 350, and 1750, respectively. In general,
the speedup factor is doubled when the argument is doubled. The moral is that a faster
algorithm, if there is one, beats a faster machine by a distance.

Our primary interest is not in the absolute running time of a method, but in comparing the

33.8 Java Programming

relative merits of algorithms independently of the machine on which they run. For example, our
analysis shows that the algorithm of allSquares2 (n) is fundamentally faster than the
algorithm of al1Squares (n), and the extent to which it is faster increases as n increases.

4 Time complexity

We calculated the running time of squares (n) above to be 140+60n ns. If the timings of the
primitive operations were halved then the running time would be 70+30n ns, and if they were
doubled it would be 280+120n ns. If the costs of + and * were increased five-fold, the cost of
method invocation and return were halved, and the cost of all other operations remained
unchanged, the running time would be 85+180n ns. It should be evident that the running time
on any machine will have the shape A+Bn where A and B stand for some constants. Only A and
B vary from machine to machine. We say that the time complexity function or simply the time
complexity of squares (n) is A+Bn where A and B denote constants. When we state that the
time complexity is A+Bn, or whatever it may be, we do not state units such as nanoseconds or
microseconds — that would be pointless as we don’t know the values of A and B. If we wanted
to know the values of A and B for a particular machine we could discover them empirically, in
which case we would express A and B as nanoseconds or milliseconds. However, we are
usually not interested in knowing the values of the constants.

As another example, recall that we calculated the running time of allSquares (n) as
240+200n+30n2 ns. This will change from machine to machine, but it will always be of the
form A+Bn+Cn? for A, B, and C some constants (A and B here are unrelated to A and B in the
time complexity of squares ()). Hence the time complexity of allSquares (n) is
A+Bn+Cn2. In contrast, we calculated the running time of allSquares2 (n) as 120+170n
ns, and so its time complexity is E+Fn where E and F denote constants.

For a final example, recall that the running time of foo (n) is 160 ns. This figure will vary
with the machine on which we run foo (), but it will always be a constant independent of n.
The time complexity of foo (n) is therefore A where A denotes some constant.

We use time complexities in two ways. First, time complexity gives us a strong indication of
how fast a method is, independently of the machine on which it runs. Although it doesn’t tell us
the running time for a particular machine, it tells us how the running time changes as the
arguments change. To take the example of squares (), the time complexity allows us to say
how longer it takes to run squares (2*n) Or squares (3*n) in comparison with
squares (n). The time complexity of squares (n) is A+Bn, and so the time to run
squares (C*n) for ¢ some constant is A+Bcn. Hence the time to run squares (C*n) is
greater than the time to run squares (n) by a factor of (A+Bcn)/(A+Bn). As n increases, the
relative influence of A in both A+Bn and A+Bcn diminishes to insignificance, and so
(A+Bcn)/(A+Bn) is approximately ¢ for all but small values of n. Therefore the running time of
squares (C*n) is about ¢ times the running time of squares (n) . In short, if we double the
size of the problem, we double the time it takes to solve it. We regard this as a moderately fast

Running Time 33.9

solution. Most tasks in everyday life have a similar characteristic: it takes us twice as long to
polish a floor that is twice the size. If we go through the same exercise for allSquares (),
we find that the running time of allSquares (c*n) is c2 times the running time of
allSquares (n). In this case, if we double the size of the problem, we multiply by 4 the
time it takes to solve it. This is computationally expensive, because no matter how fast the
machine, the running time increases rapidly as the size of the problem increases, and we soon
reach a limit beyond which we cannot solve the problem in a reasonable time. We have already
seen the figures.

The second role of time complexity is in comparing alternative solutions to a problem. The
time complexity of a method is really a measure of the underlying algorithm rather than a
particular encoding of it. Rearranging the code or modifying it in small ways to save a few
assignments or multiplications does not change the time complexity — the value of the constants
(called A, B, etc above) will change, but not the overall form.

5 Calculating time complexity orTionAL

We can calculate the time complexity of a method without knowing actual timings. First, view
the method as being composed of blocks of code each of whose running times is constant. For
each block, introduce a name for the time it takes, and note the number of times it is executed.
For example, recall squares () from a preceding section:

static int squares(int n) { // return 1*1+2*2+3*3+.. +n*n, O<=n
intfi=0;intfs=0;
while (i<n) {
i =i+l; s = s+i*i;
}

return s;

We identify the following constituent blocks of code in squares (n):

code cost | no of executions
invocation Co 1
i=0; s=0; Cq 1
i<n C2 n+l
i=i41; s=s+i*i; Cj n
return s; Cy 1

Now add up the costs of the constituent component, which in the case of squares (n) Iis
Cot+C1+Cy(n+1)+C3n+Cy, which is equivalent to (Cy+Cq+Cy+Cy) + (C»+C3)n, which we can
write as A+Bn, where A=C;+C,+C,+C, and B=C,+Cs.

33.10 Java Programming

We give further examples below, all of which are optional.

Example 1: sum of squares

A well-known formula in mathematics is that 12+22+32+...+n2 = n(n+1)(2n+1)/6. We can use
this to write a faster version of squares () :

static int squares2(int n) { // return 1*1+2*2+3*3+..+n*n, O<=n
return (n*(n+1)*(2*n+1))/6;
}

squares?2 (n) consists of a single statement whose running time does not vary with n, and
therefore its time complexity is some constant A. We can make a new version of
allSquares () —call it allSquares3 () —which is like all1Squares () except that it
invokes squares?2 () in place of squares (). The time complexity of al1Squares3 (n)
turns out to be A+Bn (it is an easy exercise to show this). Although this is the same time
complexity as that of al1Squares2 (), the respective running times on a particular machine
will be different. The difference is too small to register in the time complexity function,
however.

Example 2: integer square root

The following method computes the integer square root of a natural number, i.e. the square root
with any fraction dropped. For example, an invocation of intSqrt (18) returns 4, and an
invocation of intSqrt (9) returns 3.

static int intSqrt(int n) { // square root of n rounded down, n>=0
inti=0;
while ((i+1)*(i+1)) <= n) {
i =i+l;
}

return i;

}

We show that intSqrt (n) has time complexity A+BLVnJ, where A and B denote constants
and |_| denotes rounding down (e.g. [3.79=3). intSqrt () has the same shape as
squares () and allSquares?2 (), i.e. some initialisation statements, followed by a loop
whose body is simple, and a return statement. Hence by exactly the same reasoning as we
applied previously, we can deduce that the time complexity has the form A+Bk, where k
denotes the number of times the loop body is executed. Now the loop is iterated for 1 =0, 1, 2,
.. until (1+1)2>n, i.e. until 1>Vn-1, i.e. until 1=/ Vn. Therefore k= Vn.

Example 3: selection sort

The following is an implementation of selection sort:

void sort(int[Jw) {

Running Time 33.11

inti=0;
while (i<w.length) {
int m=i;int j =i+l
while (j<w.length) {
if Wjkw[m]) m=j;
j++;
}
int + = wl[i]; w[i]=w[m], w[m] = t;

1++;

}

We show that the time complexity of sort (w) is E+Fn+Gn? for some constants E, F, and G,
where n abbreviates w. 1ength. Observe that the body of the inner loop is executed for j in
the range i+1 to n in steps of 1, and hence is executed n—(i+1) times, i.e. n—i—1. Therefore by
the same reasoning as previously, the cost of a single execution of the body of the inner loop is
C+B(n—i-1), for some constants B and C, which we may write as A+B(n—1i) where A=C-B.
Now the body of the main loop is executed for i =0, 1, 2, ..., n—1, and hence its total running
time is

A+B(n-0) + A+B(n-1) + A+B(n-2) + ... + A+B(n—(n-1))

An+B(1+2+...+n)

An+B(n(n+1)/2) (using the formula 1+2+ +n = n(n+1)/2)

We now have to add in the cost of the initialisation i=0, the final evaluation of the boolean
expression in the outer loop, and the invocation and return costs. These are independent of n,
and so let them total constant D, say. Hence the final cost is D+An+B(n(n+1)/2). This is
equivalent to D+(A+B/2)n+Bn?/2 which we can re-write as D+En+Fn?2 for some constants E,
and F.

The accompanying graph shows empirically determined running times for Machine A. The
graph agrees with the theoretical analysis because the graph of any function of the form
D+En+Fn? has a shape like the side of a bowl for n>0. We have already noted that a time
complexity of D+En+Fn?2 is costly because it grows so fast as n grows, and the graph bears
this out. Two minutes to sort an array of 100,000 elements is unacceptably slow. In contrast,
the time complexity of Quicksort is A+Bn+Cnlog,n which is much smaller than D+En+Fn?
(see the panel on logs). Indeed, repeating the experiment summarised in the graph but using
Quicksort in place of selection sort, the running time is never more than a fraction of a second,
even for an array of 100,000 elements.

33.12 Java Programming

120
°

100
T °
i
m 80
e

°
(s 60
e
c .
0 40
n °
d
S) 20 [
°
°
0 o

[]
0 10 20 30 40 50 60 70 80 90 100

size of array (thousands)

log, n is pronounced “log (base 2) of n”, where n denotes any positive number. It is the
number of times 2 is multiplied by itself to arrive at n. For example, 219=1024 and so
log,1024 = 10. As another example, 220 = 1048576 and so log,1048576 = 20. Note that
the log of a number is much smaller than the number itself. Furthermore, logs grow
extremely slowly. For example, 1048576 is more than a thousand times 1024, and yet its
log (base 2) is only twice that of 1024. Be careful not to confuse log, with V, e.g.N1048576
is 1024, whereas 10951048576 = 20 — logs are smaller than square roots. Logs need not be
whole numbers. For example, log,1024 = 10 and log,512 = 9, and hence the log (base 2)
of any number between 512 and 1024 will be greater than 9 and less than 10. For example,
log, 800 = 9.64 correct to two decimal places. Logs can be taken with respect to any base.
For example, log;g 1000 = 3 because 103=1000.

6 Big-Oh notation

Time complexity analyses the running time of a method as a function of what we call the
problem size. In array sorting, for example, the length of the array is a measure of the problem
size, and in the case of computing the integer square root of n, the magnitude of n is a measure
of the problem size. It is conventional to use n to denote the problem size, although there is no
technical reason why we should do so. If two methods with the same behaviour have different

Running Time 33.13

time complexities, the difference in the running times will not be significant for small problem
sizes. It is mostly when the problem size is big that major differences show up. Consequently,
we often simplify time complexities by assuming n is large. This enables us to drop terms
whose value is insignificant for large n. This simplified measure of complexity uses a notation
called big-Oh notation or O-notation.

If the time complexity function of a method is say, E+Fn+GnZ2, then for large values of n the
cost is dominated by the n2 term — the other terms only make small contributions which
diminish as n gets larger. For example, with E, F, and G all equal to 100, and n equal to 50000,
the value of E+Fn+Gn2 is 100+100x50000+100x50000x50000, which reduces to
100+5M+250000M (where M stands for one million). The relative contribution of the first two
terms is negligible, and the final term dominates. Indeed, n2? in the final term contributes a
factor of 2500M whereas the constant G only contributes a factor of 100. Clearly n? is the
primary source of the cost for large n, and we say that the time complexity of E+Fn+Gn?2 is
O(n2) — pronounced “order n squared” or “big-Oh of n squared”. As another example, if the
time complexity of a method is A+Bn for A and B constants, the complexity is O(n) because for
sufficiently large values of n, the contributions of A and B are swamped by n.

If a method has time complexity O(n2) we say that its running time is quadratic, or that it runs
in quadratic time, and similarly for constant time, linear time, etc. as indicated in the
accompanying table. In O-notation it is usual to write O(log n) without indicating the base of

Complexity O-notation | In words How good? Sample time for

function n=1000
A 0(@1) constant almost instantaneous | .0001 secs
A+B(log, n) O(log n) log stupendously fast .001 secs
A+Bn O(n) square root | very fast .03 secs
A+Bn O(n) linear fast .1 secs
A+B(logy n)+Cn | O(n) linear fast .1001 secs
A+Bn+Cn(log, n) | O(nlog n) | n-log-n pretty fast 1 sec
A+Bn+Cn2 0o(n?) quadratic slow for large n 1 min 40 secs
A+Cn2+Dn3 0o(n3) cubic slow for moderate n | 28 hours
A+B2" 02N exponential | impossibly slow millenia

the logarithm. The final column in the table gives a sample running time for n=1000 when all
constants have value 100 ps. This is intended to give a rough intuitive feel for relative running
times.

O-notation tells us what in practice is the crucial question about running time: how sensitive is
the running time to the size of the problem? A method with O(\n) complexity, where n denotes
the size of the problem, is not very sensitive to increases in n — if we double the size of the
problem, the running time is not doubled but increased by a factor of about 1.4 only. If the
method has time complexity O(n2), however, it is quite sensitive to increases in the size of the

33.14 Java Programming

problem — doubling the problem size, for example, will increase the running time by a factor of
4. Methods whose running times are very sensitive to increases in the size of the problem are
generally not usable for large inputs. There is a famous problem called the travelling salesman
problem which takes as input a list of n cities which a salesman is about to visit, and produces a
minimum-distance route for the salesman (a table of distances between all cities is available).
All known solutions to the travelling salesman problem have O(2") time complexity, and 2"
grows extremely rapidly indeed. For example, if it takes a mere 1 nanosecond to carry out a
basic step of the algorithm, it will require at least 250 ns to solve the problem for 50 cities, and
that’s more than 11 days. But the time taken for 100 cities is 2100 ns and that’s millions of
years! In short, the time complexity in O-notation gives us sufficient information to infer that
the known solutions are impossibly slow when there is more than a small number of cities to be
visited.

In comparing the performance of two algorithms for the same task, O-notation nearly always
suffices. For example, suppose we are told that the time complexity of two rival algorithms PO
and P1 are O(n2) and O(n3), respectively, where n denotes the problem size. Without further
information we would choose PO over P1. Would it have been any different if we had known
the actual running times? Suppose the running times are 1000+100n2 and 5n3 milliseconds,
respectively. Note that we have chosen the constants to favour P1. The times taken by PO and
P1 for various values of n are:

n PO P1

1 1.1sec .005 sec

2 1.4 sec .04 sec

3 1.9 sec .135 sec

20 41 sec 40 sec
100 16 min 41 sec 1 hr 23 min 20 sec
200 1 hr 6 min 41 sec 11 hr 6 min 40 sec

Observe that for small values of n, the differences are slight and indeed the running times are
equal for n as low as about 20. The advantage of PO becomes overwhelming as n increases
beyond 20, and it is clear that any reasonable customer would choose PO.

7 Mathematics of big-Oh

O-notation is a mathematical technique for
summarising the behaviour of functions at
large values of their arguments. It applies to all g
functions, not just complexity functions. To
define it formally we need the notion of
eventually. Let f(n) and g(n) be functions from
the naturals to the reals. We say that eventually
f(n)>g(n) if f(n)>g(n) for all n after a certain

Running Time 33.15

point, as in the accompanying diagram where f(n)>g(n) for all n>k. A function f(n) is O(n?) if
eventually Cn2>f(n) for some constant C. Function f(n) is O(log n) if eventually C log n>f(n)
for some constant C. And so on. For example, to see that the function 2+3n+5n2 is O(n2) we
need only observe that 7n2>2+3n+5n2 for all n>3. We choose the value 7 for constant C here,
but many other choices would have been equally good, such as 43 or 165. On the other hand,
the function 3" is not O(n2) because it can be shown that for any constant C, 3">Cn2 for all but
small values of n.

We mention two technical points. First, it follows from the formal definition that O-notation
does not give a tight upper bound on the growth of a function. For example, the function
10+20n is O(n) but it is also O(n2). In practice, however, we never say a function is O(n2) if we
know it is also O(n). Second, we explain why it is usual to omit the base of logs in O-notation.
Actually, there is no added information in stating the base of logs in time complexity functions
either. Consider a function such as A+Blog, n. An elementary property of logs is log, n = logy, a
x logg n, and so A+Blogy, n is equivalent to A+(Blogy, a)log, n, which is equivalent to A+Clogy,
n for C a constant. Therefore, any function that is O(log, n) is also O(logy, n).

