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Running Time of 

Methods 

1 Running time of methods 

The addition of two numbers (of type int, say) on a machine takes a certain amount of time. 

The actual time taken depends on the machine, but a typical time for a good desktop machine 

might be, say, 10 nanoseconds. A nanosecond is one billionth of a second, and is abbreviated as 

ns. Other primitive operations such as multiplying or comparing two numbers, or and’ing two 

booleans, similarly take about 10 ns to complete. The following table gives some examples of 

the time to evaluate expressions: 

 

Expression Time to evaluate (ns) 

n*3 10 

(n+3)*(n+3) 30 

(100<n*n) && (n*n<=1000) 50 

  

Note that the time to carry out primitive operations on integers does not depend on how big or 

how small the number is: it takes as long to add 5 and 7 as is does to add 1265467 and 96785.  

 

Invoking a method takes time, typically about 50 ns plus 10 ns per parameter (in addition to the 

time to evaluate arguments). A return statement takes about 50 ns, plus the time taken to 

evaluate any expression returned (the final action in a procedure is always a return, even if 



33.2 Java Programming 

there is no explicit return statement). For expensive machines, all these figures can be divided 

by a factor of 10 or more, and for more modest machines they can be multiplied by 10 or more. 

The total time for a method (or any piece of code) to run to completion is called its running 

time,  (or execution time, or time cost, or simply cost). Consider the following method, for 

example: 

 

static int foo(int n) { 

 return (n*n+1)*(n*n+1); 

} 

 

Its running time is 60 ns to invoke the method (50 ns set up time, plus 10 ns for the single 

parameter), plus 50 ns for three multiplications and two additions, plus 50 ns for the return 

statement. That amounts to 160 ns in total. This will vary according to the machine on which 

the program runs. Note that it does not depend on the value of the argument: for example, the 

time to evaluate foo(1) is the same as the time to evaluate foo(97).  

 

Assignment statements take 10 ns plus the time to evaluate the expression on the right-hand 

side. For example, the time taken to execute x=x*x+1 is 30 ns (10 ns each for *, +, and =). 

Array indexing (subscripting) takes 50 ns. For example, w[i+1]=x takes 70 ns (10 for +, 50 

for [], and 10 for =), as does x=w[i+1]. The time taken to execute a sequence of statements 

is the sum of the times to execute them individually. Consider the following alternative coding 

of foo(), for example: 

 

static int foo2(int n) { 

 int temp = n*n+1; 

 return temp*temp; 

} 

 

The running time of foo2(n) is 150 ns – it is marginally faster than foo(n) because n*n+1 

is evaluated just once.  

 

The time taken to execute an if-statement  

 

if (expr) then stmtsT else stmtsF  

 

is the time to evaluate expr plus the time to execute stmtsT if expr yields true, or 

stmtsF if expr yields false. For example, the time to execute 

 

if (x>0) then x=1; else x = x*x; 

 

is 20 ns if the boolean yields true (10 ns for > and 10 ns for the assignment) and 30 ns 

otherwise (10 ns for >, 10 ns for *, and 10 ns for the assignment). It frequently turns out in 

practice that each branch of an if-statement takes roughly the same amount of time to execute, 
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as in the preceding example. When that is the case, we take the cost of the if-statement as the 

cost of the slowest branch. For example, we would usually say that the cost of the preceding if-

statement is 30 ns. Although this may lead to a slightly pessimistic view of the running time, 

the error is negligible. 

 

Declarations of variables take no time, unless the variables are initialised in which case they are 

costed as assignments.  

 

We have made a minor simplification in assuming that the primitive operations each take the 

same amount of time. In real machines there are some small differences: multiplication of reals, 

for example, would typically take a bit longer than multiplication of integers. It will become 

clear later that the simplification we have made is insignificant. 

2 Running time of loops 

Simple Loops 

The running time of a while-loop is more difficult to measure because it depends on how many 

times the loop body is executed. Suppose that the body of while(expr){stmts} is 

executed k times. Then its running time is k times the time to execute stmts, plus k+1 times 

the time to evaluate expr. Consider, for example, the following code: 

 

i = 0; s = 0; 

while (i<100) { 

 s = s+i*i; i= i+1; 

} 

 

Observe that the body of the loop is executed 100 times. The execution time of the code is 20 

ns for the initial two assignments, plus 10050 ns for the loop body, plus 10110 ns for the 

boolean expression, giving a total running time of 6030 ns.  

 

It is not usual that we can tell by inspection how many times the loop body is executed. 

Consider method squares(n) below which computes 12+22+32+...+n2 (for example, 

squares(3) yields 14): 

 

static int squares(int n) { // return 1*1+2*2+3*3+...+n*n, 0<=n 

 int i = 0; int s = 0; 

 while (i<n) {  

  i = i+1; s = s+i*i; 

 } 

 return s; 

} 
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Observe that the time taken depends on the value supplied for parameter n. If n is 10, say, the 

loop body is executed 10 times, whereas if n is 1000 it is executed 1000 times. Clearly any 

measure of its running time will be an expression in which n occurs. In fact the execution time 

is 50 ns (invocation) plus 10 ns (parameter) plus 20 ns (initial assignments) plus (n+1)10 ns 

(boolean expression) plus n50 ns (loop body) plus 50 ns (return), giving a total running time 

of 140+60n ns. For example, the running time of squares(100) is 140+60100 ns which is 

6140 ns, whereas the running time of squares(1000) is 140+601000 ns which is 60140 ns. 

Evidently, if we increase the argument by a factor of c, the running time is also increased by a 

factor of c. We sometimes express this more informally as “double the argument, double the 

running time”. 

 

We can discover the running times for the machine on our desktop empirically. We have no 

hope of measuring times that are minute fractions of a second, but we overcome this by 

invoking the method a million times, say, and dividing the elapsed time by a million. A stop-

watch suffices for reading the start and end-times, but it is easier to use the following method 

from class System: 
 

static long nanoTime() 
 

System.nanoTime() yields the elapsed time in nanoseconds since some base time (a 

nanosecond is one billionth of a second, and is abbreviated as ns). Note that the return type is 

long, the 64-bit integer type. The following is a program to measure running times of 

squares(): 

 

class TimeMethod { 

 

 static int squares(int n) {  ..... 

 } 

 

    public static void main(String[] args) { 

  int arg = 100; // method will be timed for argument arg 

  int numCalls = 100000; // number of invocations of method 

  long startTime = System.nanoTime();  

  for(int i=0; i<=numCalls; i++)         

   squares(arg);  

  long endTime = System.nanoTime();  

  long runningTime = (endTime-startTime) /numCalls; 

  System.out.println(runningTime + " nanosecs"); 

    }    

} 

 

Sample timings on a basic desktop machine (call it Machine A) are roughly 1400 ns for 

squares(100) and 14000 ns for squares(1000. Although Machine A is evidently faster 

than the ideal machine for which we are calculating timings, it nevertheless behaves in 

accordance with the theoretical analysis, differing only by a constant factor (the speedup factor 
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being about 4.4 regardless of the argument). Expressed another way, the relationship between 

argument and running time is the same in both cases: doubling the argument of squares() 

doubles the running time. 

 

A user’s program can be temporarily suspended by the operating system when it must attend to 

other matters (such as monitoring communications on the network to which it is connected). In 

order to factor out time lost during any suspensions, you should confirm empirically 

determined running times by repeating the experiment a few times. 

Nested loops 

Consider method allSquares() below which returns an array of sums of squares. For 

example, an invocation of allSquares(5) returns an array of five elements as follows: 

 

 

 

 

Component k of the array contains 02+12+...+k2. For example, component 3 contains 

02+12++22+32, i.e. 14. 

 

static int[] allSquares(int n) {  

// return sqrs[0..n-1] , n>0, where sqrs[k] equals 0*0+1*1+2*2+...+k*k  

 int[] sqrs = new int[n]; 

 int k = 0;   

 while (k<n) {  

  sqrs[k] = squares(k); // running time not constant here!  

  k = k+1; 

 } 

 return sqrs; 

} 

 

Observe that the loop body includes an invocation of squares(k) whose running time 

depends on the value of k (the higher the value of k, the greater the running time of 

squares(k)). As a consequence, the running time of the loop body, i.e.  

 

sqrs[k] = squares(k); 

k = k+1; 

 

is not constant but increases with each successive iteration. For example, on the first iteration k 

has the value 0 and we calculate the running time to be 220 ns (50 for [], 10 for =, 140+600 

for squares(0), 10 for =, and 10 for +), whereas on the 101st iteration k has the value 100 

and the running time turns out to be 6220 ns. We say a loop is simple if the running time of its 

body is constant. The loop in allSquares() is not simple. A loop with a nested loop, or 

which invokes a method that employs a loop (as in the case of allSquares()), is rarely 

simple.  

 0 1 5 14 30 
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The running time of allSquares(n) turns out to be 240+200n+30n2 ns (the detailed 

calculations are given later). For n=1000, the cost is 30200240 ns or about 30 ms. Projected 

running times for other values of n are shown below, together with empirically measured 

running times for Machine A. 

 

n 1000 2000 10000 

Theoretical machine 30 ms 120 ms 3000 ms 

Machine A 7 ms 27 ms 700 ms 

 

Naturally the actual timings differ on the two machines, but the speedup factor is roughly the 

same at about 4.4 for all values of n. Observe also in both cases that if we multiply the 

argument by a factor of c, we multiply the running time by c2. For example, the running time of 

allSquares(2000) is about 4 times the running time of allSquares(1000), and the 

running time of allSquares(10000) is about 25 times the running time of 

allSquares(2000).  

 

The detailed calculation of the running time of allSquares(n)follows. It can be omitted 

without loss of continuity. The running time of the loop body is 220+60k ns, made up of 

140+60k ns for squares(k) plus 80 ns for the other operations. Adding in 10 ns for the 

evaluation of the boolean expression, the cost of each iteration is 230+60k ns. The loop body is 

executed for k ranging from 0 to n-1, and so its total cost is: 
 

 (230+600) + (230+601) + (230+602) +  ...  + (230+60(n-1)) 

= 230n + 60(1+2+ .. +(n-1)) 

= 230n + 60(n(n-1)/2)  (we use the fact that 1+2+..(n-1) = n(n-1)/2) 

= 230n + 30(n2-n) 

= 200n + 30n2 
 

For the total running time of allSquares(n) we add in the final evaluation of the boolean 

expression (10 ns), the invocation time (60 ns), the time to execute the return statement (50 ns), 

the assignments to variables k and sqrs (20 ns), and the cost of invoking new. A typical cost 

of invoking new is 100 ns. Adding up, the total execution time is 240+200n+30n2 ns.  

3 Algorithm vs machine 

The running time of a method which performs a certain function depends on both the speed of 

the machine and the quality of the coding. A method will run faster on a faster machine, and 

two different methods that perform the same function will have different running times on the 

same machine. More often than not, it turns out that the quality of the coding is more 

significant than the quality of the machine. For example, the following method has the same 

behaviour as allSquares() which was presented in the preceding section: 

 

static int[] allSquares2(int n) {  
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// return sqrs[0..n-1] , n>0, where sqrs[k] equals 1*1+2*2+...+k*k  

 int[] sqrs = new int[n]; 

 sqrs[0] = 0;  

 int k = 1;  

 while (k<n) {  

  sqrs[k] = sqrs[k-1]+k*k; 

  k = k+1; 

 } 

 return sqrs; 

} 

 

In this version, the running time of the loop body  

 

sqrs[k] = sqrs[k-1]+k*k; 

k = k+1; 

 

is constant (in fact, 160 ns). Using the fact that the loop body is executed n-1 times, we easily 

calculate the running time as 120+170n ns. Some running times for various values of n are 

given in the table below in microseconds (a microsecond is one millionth of a second, 

abbreviated µs). 

 

n 1000 2000 10000 

Theoretical machine 170 µs 340 µs 1700 µs 

Machine A 44 µs 86 µs 443 µs 

 

First observe that experiment agrees with theory, allowing for a speedup factor of course. The 

speedup factor here is about 3.9. That this differs from previous speedup factors is to be 

expected as different operations will have different speedup rates. For example, addition of 

reals could be 10 times faster on one machine than on another, whereas multiplication might be 

only 5 times faster. Hence the speedup of a method that uses additions only will be greater than 

one which uses multiplications.  

 

More importantly, observe that although allSquares2() does the same job as 

allSquares(), it is much faster. Indeed the speed gain is of a different quality than the 

speed gain achievable with a faster machine. A fast machine will speed up allSquares(n) 

by a constant factor, regardless of the value of n. The improved coding in allSquares2(n), 

however, speeds up the computation by a factor that increases as n increases, and the rate of 

increase is dramatic. For n equal to 1000, 2000, and 10000 in turn, allSquares2(n) is 

faster than allSquares(n) by a factor of about 175, 350, and 1750, respectively. In general, 

the speedup factor is doubled when the argument is doubled. The moral is that a faster 

algorithm, if there is one, beats a faster machine by a distance.  

 

Our primary interest is not in the absolute running time of a method, but in comparing the 
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relative merits of algorithms independently of the machine on which they run. For example, our 

analysis shows that the algorithm of allSquares2(n) is fundamentally faster than the 

algorithm of allSquares(n), and the extent to which it is faster increases as n increases.  

4 Time complexity 

We calculated the running time of squares(n) above to be 140+60n ns. If the timings of the 

primitive operations were halved then the running time would be 70+30n ns, and if they were 

doubled it would be 280+120n ns. If the costs of + and * were increased five-fold, the cost of 

method invocation and return were halved, and the cost of all other operations remained 

unchanged, the running time would be 85+180n ns. It should be evident that the running time 

on any machine will have the shape A+Bn where A and B stand for some constants. Only A and 

B vary from machine to machine. We say that the time complexity function or simply the time 

complexity of squares(n) is A+Bn where A and B denote constants. When we state that the 

time complexity is A+Bn, or whatever it may be, we do not state units such as nanoseconds or 

microseconds – that would be pointless as we don’t know the values of A and B. If we wanted 

to know the values of A and B for a particular machine we could discover them empirically, in 

which case we would express A and B as nanoseconds or milliseconds. However, we are 

usually not interested in knowing the values of the constants.  

 

As another example, recall that we calculated the running time of allSquares(n) as 

240+200n+30n2 ns. This will change from machine to machine, but it will always be of the 

form A+Bn+Cn2 for A, B, and C some constants (A and B here are unrelated to A and B in the 

time complexity of squares()). Hence the time complexity of allSquares(n) is 

A+Bn+Cn2. In contrast, we calculated the running time of allSquares2(n) as 120+170n 

ns, and so its time complexity is E+Fn where E and F denote constants. 

 

For a final example, recall that the running time of foo(n) is 160 ns. This figure will vary 

with the machine on which we run foo(), but it will always be a constant independent of n. 

The time complexity of foo(n) is therefore A where A denotes some constant.  

 

We use time complexities in two ways. First, time complexity gives us a strong indication of 

how fast a method is, independently of the machine on which it runs. Although it doesn’t tell us 

the running time for a particular machine, it tells us how the running time changes as the 

arguments change. To take the example of squares(),  the time complexity allows us to say 

how longer it takes to run squares(2*n) or squares(3*n) in comparison with 

squares(n). The time complexity of squares(n) is A+Bn, and so the time to run 

squares(c*n) for c some constant is A+Bcn. Hence the time to run squares(c*n) is 

greater than the time to run squares(n)by a factor of (A+Bcn)/(A+Bn). As n increases, the 

relative influence of A in both A+Bn and A+Bcn diminishes to insignificance, and so 

(A+Bcn)/(A+Bn) is approximately c for all but small values of n. Therefore the running time of 

squares(c*n) is about c times the running time of squares(n). In short, if we double the 

size of the problem, we double the time it takes to solve it. We regard this as a moderately fast 
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solution. Most tasks in everyday life have a similar characteristic: it takes us twice as long to 

polish a floor that is twice the size. If we go through the same exercise for allSquares(), 

we find that the running time of allSquares(c*n) is c2 times the running time of 

allSquares(n). In this case, if we double the size of the problem, we multiply by 4 the 

time it takes to solve it. This is computationally expensive, because no matter how fast the 

machine, the running time increases rapidly as the size of the problem increases, and we soon 

reach a limit beyond which we cannot solve the problem in a reasonable time. We have already 

seen the figures. 

 

The second role of time complexity is in comparing alternative solutions to a problem. The 

time complexity of a method is really a measure of the underlying algorithm rather than a 

particular encoding of it. Rearranging the code or modifying it in small ways to save a few 

assignments or multiplications does not change the time complexity – the value of the constants 

(called A, B, etc above) will change, but not the overall form.  

5 Calculating time complexity OPTIONAL 

We can calculate the time complexity of a method without knowing actual timings. First, view 

the method as being composed of blocks of code each of whose running times is constant. For 

each block, introduce a name for the time it takes, and note the number of times it is executed. 

For example, recall squares() from a preceding section: 

 

static int squares(int n) { // return 1*1+2*2+3*3+...+n*n, 0<=n 

 int i = 0; int s = 0; 

 while (i<n) {  

  i = i+1; s = s+i*i; 

 } 

 return s; 

} 

 

We identify the following constituent blocks of code in squares(n): 

 

code cost no of executions 

invocation C0 1 

i=0; s=0; C1 1 

i<n C2 n+1 

i=i+1; s=s+i*i; C3 n 

return s; C4 1 

 

Now add up the costs of the constituent component, which in the case of squares(n) is 

C0+C1+C2(n+1)+C3n+C4, which is equivalent to (C0+C1+C2+C4) + (C2+C3)n, which we can 

write as A+Bn, where A=C0+C1+C2+C4 and B=C2+C3.  
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We give further examples below, all of which are optional. 

Example 1: sum of squares 

A well-known formula in mathematics is that 12+22+32+...+n2 = n(n+1)(2n+1)/6. We can use 

this to write a faster version of squares(): 

 

static int squares2(int n) { // return 1*1+2*2+3*3+...+n*n, 0<=n 

 return (n*(n+1)*(2*n+1))/6; 

} 

 

squares2(n) consists of a single statement whose running time does not vary with n, and 

therefore its time complexity is some constant A. We can make a new version of 

allSquares() – call it allSquares3() – which is like allSquares() except that it 

invokes squares2() in place of squares(). The time complexity of allSquares3(n) 

turns out to be A+Bn (it is an easy exercise to show this). Although this is the same time 

complexity as that of allSquares2(), the respective running times on a particular machine 

will be different. The difference is too small to register in the time complexity function, 

however. 

Example 2: integer square root 

The following method computes the integer square root of a natural number, i.e. the square root 

with any fraction dropped. For example, an invocation of intSqrt(18) returns 4, and an 

invocation of intSqrt(9) returns 3. 

 

static int intSqrt(int n) { // square root of n rounded down, n>=0 

 int i = 0; 

 while ((i+1)*(i+1)) <= n) { 

  i = i+1;  

 } 

 return i; 

} 

 

We show that intSqrt(n) has time complexity A+B√n, where A and B denote constants  

and _ denotes rounding down (e.g. 3.79=3). intSqrt() has the same shape as 

squares() and allSquares2(), i.e. some initialisation statements, followed by a loop 

whose body is simple, and a return statement. Hence by exactly the same reasoning as we 

applied previously, we can deduce that the time complexity has the form A+Bk, where k 

denotes the number of times the loop body is executed. Now the loop is iterated for i = 0, 1, 2, 

... until (i+1)2>n, i.e. until i>√n–1, i.e. until i=√n. Therefore k=√n. 

Example 3: selection sort 

The following is an implementation of selection sort: 

 

    void sort(int[] w) { 
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            int i = 0;  

            while (i<w.length) { 

                int m = i; int j = i+1;  

                while (j<w.length) { 

                    if (w[j]<w[m])  m = j; 

                    j++; 

                } 

                int t = w[i]; w[i] = w[m]; w[m] = t; 

                i++; 

            } 

    } 

 

We show that the time complexity of sort(w) is E+Fn+Gn2 for some constants E, F, and G, 

where n abbreviates w.length. Observe that the body of the inner loop is executed for j in 

the range i+1 to n in steps of 1, and hence is executed n–(i+1) times, i.e. n–i–1. Therefore by 

the same reasoning as previously, the cost of a single execution of the body of the inner loop is 

C+B(n–i–1), for some constants B and C, which we may write as A+B(n–i) where A=C–B. 

Now the body of the main loop is executed for i = 0, 1, 2, ..., n–1, and hence its total running 

time is 
 

 A+B(n–0) + A+B(n–1) + A+B(n–2) + ... + A+B(n–(n-1)) 

= An+B(1+2+...+n) 

= An+B(n(n+1)/2)   (using the formula 1+2+ .... +n = n(n+1)/2) 
 

 

We now have to add in the cost of the initialisation i=0, the final evaluation of the boolean 

expression in the outer loop, and the invocation and return costs. These are independent of n, 

and so let them total constant D, say. Hence the final cost is D+An+B(n(n+1)/2). This is 

equivalent to D+(A+B/2)n+Bn2/2 which we can re-write as D+En+Fn2 for some constants E, 

and F.  

 

The accompanying graph shows empirically determined running times for Machine A. The 

graph agrees with the theoretical analysis because the graph of any function of the form 

D+En+Fn2 has a shape like the side of a bowl for n0. We have already noted that a time 

complexity of D+En+Fn2 is costly because it grows so fast as n grows, and the graph bears 

this out. Two minutes to sort an array of 100,000 elements is unacceptably slow. In contrast, 

the time complexity of Quicksort is A+Bn+Cnlog2n which is much smaller than D+En+Fn2 

(see the panel on logs). Indeed, repeating the experiment summarised in the graph but using 

Quicksort in place of selection sort, the running time is never more than a fraction of a second, 

even for an array of 100,000 elements. 
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6 Big-Oh notation 

Time complexity analyses the running time of a method as a function of what we call the 

problem size. In array sorting, for example, the length of the array is a measure of the problem 

size, and in the case of computing the integer square root of n, the magnitude of n is a measure 

of the problem size. It is conventional to use n to denote the problem size, although there is no 

technical reason why we should do so. If two methods with the same behaviour have different 
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log2 n is pronounced “log (base 2) of n”, where n denotes any positive number. It is the 

number of times 2 is multiplied by itself to arrive at n. For example, 210=1024 and so 

log21024 = 10. As another example, 220 = 1048576 and so log21048576 = 20. Note that 

the log of a number is much smaller than the number itself. Furthermore, logs grow 

extremely slowly. For example, 1048576 is more than a thousand times 1024, and yet its 

log (base 2) is only twice that of 1024. Be careful not to confuse log2 with √, e.g.√1048576 

is 1024, whereas log21048576 = 20 – logs are smaller than square roots. Logs need not be 

whole numbers. For example, log21024 = 10 and log2512 = 9, and hence the log (base 2) 

of any number between 512 and 1024 will be greater than 9 and less than 10. For example, 

log2 800 = 9.64 correct to two decimal places. Logs can be taken with respect to any base. 

For example, log10 1000 = 3 because 103=1000. 
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time complexities, the difference in the running times will not be significant for small problem 

sizes. It is mostly when the problem size is big that major differences show up. Consequently, 

we often simplify time complexities by assuming n is large. This enables us to drop terms 

whose value is insignificant for large n. This simplified measure of complexity uses a notation 

called big-Oh notation or O-notation. 

 

If the time complexity function of a method is say, E+Fn+Gn2, then for large values of n the 

cost is dominated by the n2 term – the other terms only make small contributions which 

diminish as n gets larger. For example, with E, F, and G all equal to 100, and n equal to 50000, 

the value of E+Fn+Gn2 is 100+10050000+1005000050000, which reduces to 

100+5M+250000M (where M stands for one million). The relative contribution of the first two 

terms is negligible, and the final term dominates. Indeed, n2 in the final term contributes a 

factor of 2500M whereas the constant G only contributes a factor of 100. Clearly n2 is the 

primary source of the cost for large n, and we say that the time complexity of E+Fn+Gn2 is 

O(n2) – pronounced “order n squared” or “big-Oh of  n squared”. As another example, if the 

time complexity of a method is A+Bn for A and B constants, the complexity is O(n) because for 

sufficiently large values of n, the contributions of A and B are swamped by n.  

 

If a method has time complexity O(n2) we say that its running time is quadratic, or that it runs 

in quadratic time, and similarly for constant time, linear time, etc. as indicated in the 

accompanying table. In O-notation it is usual to write O(log n) without indicating the base of 

the logarithm. The final column in the table gives a sample running time for n=1000 when all 

constants have value 100 µs. This is intended to give a rough intuitive feel for relative running 

times.  

 

O-notation tells us what in practice is the crucial question about running time: how sensitive is 

the running time to the size of the problem? A method with O(√n) complexity, where n denotes 

the size of the problem, is not very sensitive to increases in n – if we double the size of the 

problem, the running time is not doubled but increased by a factor of about 1.4 only. If the 

method has time complexity O(n2), however, it is quite sensitive to increases in the size of the 

Complexity 

function 

O-notation In words How good? Sample time for 

n=1000 

A O(1) constant almost instantaneous .0001 secs 

A+B(log2 n) O(log n) log stupendously fast .001 secs 

A+B√n O(√n) square root very fast .03 secs 

A+Bn O(n) linear fast .1 secs 

A+B(log2 n)+Cn O(n) linear fast .1001 secs 

A+Bn+Cn(log2 n) O(n log n) n-log-n pretty fast 1 sec 

A+Bn+Cn2 O(n2) quadratic slow for large n 1 min 40 secs 

A+Cn2+Dn3 O(n3) cubic slow for moderate  n 28 hours 

A+B2n O(2n) exponential impossibly slow millenia 
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problem – doubling the problem size, for example, will increase the running time by a factor of 

4. Methods whose running times are very sensitive to increases in the size of the problem are 

generally not usable for large inputs. There is a famous problem called the travelling salesman 

problem which takes as input a list of n cities which a salesman is about to visit, and produces a 

minimum-distance route for the salesman (a table of distances between all cities is available). 

All known solutions to the travelling salesman problem have O(2n) time complexity, and 2n 

grows extremely rapidly indeed. For example, if it takes a mere 1 nanosecond to carry out a 

basic step of the algorithm, it will require at least 250 ns to solve the problem for 50 cities, and 

that’s more than 11 days. But the time taken for 100 cities is 2100 ns and that’s millions of 

years! In short, the time complexity in O-notation gives us sufficient information to infer that 

the known solutions are impossibly slow when there is more than a small number of cities to be 

visited. 

 

In comparing the performance of two algorithms for the same task, O-notation nearly always 

suffices. For example, suppose we are told that the time complexity of two rival algorithms P0 

and P1 are O(n2) and O(n3), respectively, where n denotes the problem size. Without further 

information we would choose P0 over P1. Would it have been any different if we had known 

the actual running times? Suppose the running times are 1000+100n2 and 5n3 milliseconds, 

respectively. Note that we have chosen the constants to favour P1. The times taken by P0 and 

P1 for various values of n are: 

 

n P0 P1 

1 1.1 sec .005 sec 

2 1.4 sec .04 sec 

3 1.9 sec .135 sec 

20 41 sec 40 sec 

100 16 min 41 sec 1 hr 23 min 20 sec  

200 1 hr 6 min 41 sec 11 hr 6 min 40 sec 

 

Observe that for small values of n, the differences are slight and indeed the running times are 

equal for n as low as about 20. The advantage of P0 becomes overwhelming as n increases 

beyond 20, and it is clear that any reasonable customer would choose P0. 

7 Mathematics of big-Oh 

O-notation is a mathematical technique for 

summarising the behaviour of functions at 

large values of their arguments. It applies to all 

functions, not just complexity functions. To 

define it formally we need the notion of 

eventually. Let f(n) and g(n) be functions from 

the naturals to the reals. We say that eventually 

f(n)≥g(n) if  f(n)≥g(n) for all n after a certain 
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point, as in the accompanying diagram where f(n)≥g(n) for all n≥k. A function f(n) is O(n2) if 

eventually Cn2≥f(n) for some constant C. Function f(n) is O(log n) if eventually C log n≥f(n) 

for some constant C. And so on. For example, to see that the function 2+3n+5n2 is O(n2) we 

need only observe that 7n2≥2+3n+5n2 for all n≥3. We choose the value 7 for constant C here, 

but many other choices would  have been equally good, such as 43 or 165. On the other hand, 

the function 3n is not O(n2) because it can be shown that for any constant C, 3n≥Cn2 for all but 

small values of n.  

 

We mention two technical points. First, it follows from the formal definition that O-notation 

does not give a tight upper bound on the growth of a function. For example, the function 

10+20n is O(n) but it is also O(n2). In practice, however, we never say a function is O(n2) if we 

know it is also O(n). Second, we explain why it is usual to omit the base of logs in O-notation. 

Actually, there is no added information in stating the base of logs in time complexity functions 

either. Consider a function such as A+Blogb n. An elementary property of logs is logb n = logb a 

 loga n, and so A+Blogb n is equivalent to A+(Blogb a)loga n, which is equivalent to A+Clogb 

n for C a constant. Therefore, any function that is O(loga n) is also O(logb n). 

 


