Lecture 13 & 14

Single Dimensional Arrays

Dr. Martin O’Connor

CA166
www.computing.dcu.ie/~moconnor

Declaring and Instantiating Arrays
Accessing Array Elements

Writing Methods that Process Arrays
Aqggregate Array Operations

Using Arrays In Classes
Manipulating Arrays

Command line arguments

/

 Anarrayisa container object that holds a fixed
number of values of a single type

* The length of the array is established when the
array Is created. After creation, its length is fixed

* An Example:

Element
First index (at index 8)

|
o) 1 23456?\3 8 — Indices

WAANNNANNN]

- Array length is 10 >

™

Arrays are used to store and manipulate a collection
of related values

It would be impractical to use a sequence of variables
such as valuel, value2, value3 and so on

An array Is a sequence of variables of the same data
type.

The data type can be any of Java's primitive types

(int, short, byte, long, float, double, boolean, char),
or a class.

Each item in an array is called an element.

Each element is accessed by its numerical index
4

Declaring and Instantiating

Arrays

Arrays are objects, so creating an array
requires two steps:
1. declaring a reference to the array
2. Instantiating the array

To declare a reference to the array, use this

syntax:
datatype[] arrayName;

To Instantiate an array, use this syntax:

arrayName = new datatypel[size];

where size 1s an expression that evaluates
to an integer and specifies the number of
elements in the array.

Examples
Declaring arrays:

double[] dailyTemps; // elements are doubles
String[] cdTracks; // elements are Strings
boolean[] answers; // elements are booleans
Auto[] cars; // elements are Auto references

int[] c¢s101, bio201; // two int arrays

Instantiating these arrays:
dailyTemps = new double[365]; // 365 elements

cdTracks = new String[1l5]; // 15 elements
int numberOfQuestions = 30;

answers = new boolean[numberOfQuestions];
cars = new Auto[3]; // 3 elements
cs1l01l = new int[5]; // 5 elements

bio201 = new int[4]; // 4 elements 6

The Auto Class

» We will be using the Auto class as a simple
example throughout this lecture.

e The Auto class has three instance variables:
model, milesDriven, and gallonsOfGas

public class Auto

{
private String model;
private int milesDriven;

private double gallonsOfGas;

When an array Is instantiated, the elements
are assigned default values according to the

array data type.
Array data type Default value
byte, short, int, long 0
float, double 0.0
char The null character
boolean false
Any object reference null
(for example, a String)

Combining the Declaration and

|nstantiation of Arrays

* One way to create an array Is with the new
operator

Syntax:

datatypel[] arrayName = new datatypel[size];

Examples:
double[] dailyTemps = new double[365];
String[] cdTracks = new String[1l5];

int numberOfQuestions = 30;

boolean[] answers = new boolean[numberOfQuestions];
Auto[] cars = new Auto[3];

int[] ¢sl01l = new int[5], bio201 = new int[4];

Assigning Initial VValues to Arrays

S
~Arrays can be instantiated by specifying a list of
Initial values.
Syntax:
datatype[] arrayName = { valueO, wvaluel, .. };

where valueN 1s any expression evaluating to
the data type of the array and 1s the wvalue
to assign to the element at index N.

Examples:
int nine = 9;
int[] oddNumbers = { 1, 3, 5, 7, nine, nine + 2,
ISR 1, 19 L
Auto sportsCar = new Auto("Ferrari", 0, 0.0);
Auto[] cars = { sportsCar, new Auto(),

new Auto ("BMW", 100, 15.0) }; 10

« An Initialization list can be given only when
the array Is declared.

— Attempting to assign values to an array using an
Initialization list after the array Is instantiated
will generate a compiler error.

* The new keyword is not used when an array
IS Instantiated using an initialization list.
Also, no size is specified for the array; the
number of values in the initialization list

determines the size of the array.
11

I|II
. 4

o =,

« \When declaring an array, you can also place the

brackets after the array’s name
double dailyTemps]|]; // elements are doubles

« IDONOT DO THIS!

» The Java programming convention strongly
discourages this style of declaration.

« Why? brackets are used to both indicate and
Identify an array type and consequently, should
always appear beside the type declaration.

double[] dailyTemps; // elements are dOUblff

Accessing Array Elements

To access an element of an array, use this syntax:
arrayName [exp]

where exp 1s an expression that
evaluates to an 1nteger.

exp Is the element's index — its position within
the array.

The index of the first element in an array is O.

length iIs a public, constant integer instance
variable that holds the number of elements in the
array and Is accessed using this syntax:

arrayName. length

Example: dailyTemps.length 13

Attempting to access an element of an array using an
Index less than O or greater than arrayName.length -
1 will generate an ArraylndexOutOfBoundsEXxception
at run time.

Note that for an array, length — without parentheses — is
an instance variable, whereas for Strings, length() —
with parentheses — Is a method.

Note also that the array's instance variable is named

length, rather than size. y

Accessing Array Elements

Element Syntax

Element 0 arrayName [0]
Element i arrayName [1]
Last element arrayName [arrayName.length - 1]

15

Accessing Array Elements

The next few lines declare and assign values to each element of an array:

int[] anArray = new int[3]:

anArray[0] = 100; // initialize first element
anaArray[l] 200: J/ initialize second element
anArray[2] = 300; // and so forth

Each array element is accessed by its mumerical index:

System.nut.printhnt"Element 1l at index 0: "™ + anbdrray([0]):
syvstem.out.println("Element 2 at index 1: " 4+ anArrav([l]):
Svstem.out.println("Element 3 at index 2: " + anfrrav([Z2]):

Alternatively, vou can use the shortcut syntax to create and mitialize an array:
int[] amArray = { 100, 200, 300 %;

Here the length of the array is determined by the number of values
provided between braces and separated by commas. 16

/

values:

Another Example

cellBills Array

When instantiated: 3

cellBills

cellBEills([0O]

cellBills[1]

cellBills[2]
cellBills[3]

cellBills([4]

cellBEills[5]

After assigning

cellEBEills

0.0o0

0.0o0

0.0o0

0.o0

0.o0

0.o0

cellBEills[0]

cellBills[1]

cellBills[2]
cellBills[3]

cellBill=s[4]

cellBEills[5]

15.

24

34.

&7

3

.55

14.

61

B5.

a9

19.

=

_—\

17

Instantiating an Array of Objects

To Instantiate an array with a class data type:

1. instantiate the array (elements are object
references, initialized to null)

2. Instantiate the objects

Example:
// instantiate array; all elements are null

Auto[] cars = new Auto[3];

// instantiate objects and assign to elements
Auto sportsCar = new Auto("Miata", 100, 5.0);
cars[0] = sportsCar;

cars[1l] = new Auto();

// cars[2] 1is still null

18

Aggregate Array Operations

We can perform the same operations on arrays
as we do on a series of input values.
— calculate the total of all values
— count values meeting specified criteria
— find the average value
— find a minimum or maximum value, etc.

To perform an operation on all elements in an
array, we use a for loop to perform the

operation on each element in turn. y

Standard for Loop Header

for Array Operations

for (int 1 = 0; 1 < arrayName.length; 1i++)

— Initialization statement (int 1 = 0) creates index I
and sets it to the first element (0).

— loop condition (i < arrayName.length) continues
execution until the end of the array is reached.

— loop update (i++) Increments the index to the next
element, so that we process each element in order.

Inside the for loop, we reference the current
element as:

N .
arrayName [1] 20

Printing All Elements of an Array

Example: This code prints each element in an
array named cellBills, one element per line
(assuming that cellBills has been
Instantiated as an array of doubles):

for (int 1 = 0; 1 < cellBills.length; 1i++)
{
System.out.println(cellBills[1])

}

21

Reading Data Into an Array

Example: this code reads values from the user
Into an array named cellBills, which has
previously been instantiated:

Scanner scan new Scanner (System.in);

for (int 1 = 0; 1 < cellBills.length; 1++)
{

System.out.print ("Enter bill > ");

cellBills[1] = scan.nextDouble();

 Note: the above code has no error checking
22

Calculating a Total

Example: this code calculates the total value
of all elements in an array named cellBills,
which has previously been instantiated:

double total 0.0; // initialize total

for (int 1 = 0; 1 < cellBills.length; 1i++)
{

total += cellBills[1];
}

System.out.println("The total is " + total);

23

Finding Maximum/Minimum Values

Example: this code finds the index of the
maximum value in an array named cellBills:

// make first element the current maximum

int maxIndex= 0;

// start for loop at element 1
for (int 1 = 1; 1 < cellBills.length; 1i++)
{
1f (cellBills[1i] > cellBills[maxIndex])
maxIndex = 1;
}

System.out.println("The maximum 1is "
+ cellBills[maxIndex]);

24

Copying Arrays

Suppose we want to copy the elements of an
array to another array. We could try this code:

double[] billsBackup = new double [6];
billsBackup = cellBills; // incorrect!

Although this code compiles, it is logically
Incorrect! We are copying the cellBills object
reference to the billsBackup object reference.
We are not copying the array data.

The result of this code i1s shown on the next slide

->
25

Copying Array References

/

billsBackup

The line of code above line has this effect.
Both references point to the same array.

= cellBills;

~2ellBills=s

bill=EBackup

billzsBackup[0]

billsBackup[1]

billzsBackup[Z]
billsBackup[3]

billsEBackup[4]

billzsBackup[5]

—l

—

_h.
_P.

cellBills[0]

cellBills[1]

cellBills[Z2]
cellBills[3]

— cellEBEill=s[4]

—T

cellBills[5]

45.

24

a4,

67

q=

.55

44,

61

34,

oo

49,

75

- = ¢ \\

26

Copying Array Values

Example: this code copies the values of all elements In
an array named cellBills to an array named
billsBackup, both of which have previously been

Instantiated with the same length:

for (int 1 = 0; 1 < cellBills.length; 1i++)

{
billsBackup[i] = cellBills[1];

)
The effect of this for loop is shown on the next slide ->

27

Copying Array Values

cellEBills=s

cellEills[0]
cellBEills[1]

cellEills[2]
cellEills[3]

cellBills[4]

cellBills[5]

A separate copy of the array has been created.

45

24

a4,

By

q2

.55

44 .

Bl

65.

a9

49

TS

billsEBackup

billsEBackup[0O]

billsEBackup[1]

billsEBackup[Z]
billsBackup[3]

billsBackup[4]
billsBackup[5]

35,

249

54.

67

32

.55

44,

61

B5.

29

49,

75

28

Changing an Array's Size

An array's length instance variable Is constant.

— that Is, arrays are assigned a constant size
when they are instantiated.

To expand an array while maintaining its

original values:

1. Instantiate a new array with the new size and a
temporary name.

2. Copy the original elements to the new array.

3. Then point the original array reference to the new
array.

4. Assign a null value to the temporary array reference.
29

Expanding the Size of an Array

This code expands the size of the cellBills array from 6
elements to 12 elements:
//instantiate new array with a temporary name
double[] temp = new double[12];

// copy all elements from cellBills to temp
for (int 1 = 0; 1 < cellBills.length; 1i++)
{

temp[i] = cellBills[i]; // copy each element

// point cellBills to new array
cellBills = temp;

temp = null; // assign null to temp reference

30

Comparing Arrays for Equality

To compare whether the elements of two arrays are
equal:
1. Determine if both arrays have the same length.

2. Compare each element in the first array with the
corresponding element in the second array.

To do this, we'll use a flag variable and a for loop.

At the end of the code, the value of the flag variable
IsEqual will indicate whether the arrays are
equal.

il

Comparing cellBillsl1 to cellBills2

f boolean isEqual = true; // flag variable —
1if (cellBillsl.length != cellBills2.length) {
isEqual = false; // sizes are different
} else {
for (int 1 = 0; 1 < cellBillsl.length && 1sEqual; 1++)
{
1f (Math.abs(cellBillsl[1] - cellBills2[1]) > 0.001)

{

isEqual = false; // elements are not equal

32

In a user-defined class, an array can be
— an Instance variable
— a parameter to a method
— a return value from a method
— a local variable in a method

33

Methods with Array Parameters

To define a method that takes an array as a
parameter, use this syntax:

accessModifier returnType methodName (

dataType[] arrayName)

To define a method that returns an array, use
this syntax:

accessModifier dataType[] methodName (
parameterList)

To pass an array as an argument when calling

a method, use the array name without
brackets:

methodName (arrayName) 34

_
. 4

7 ~

If you think of the brackets as being part of
the data type of the array, then it's easy to
remember that

— brackets are included in the method header (or
method signature) where the data types of
parameters are given

— brackets are not included in method calls
(where the data itself is given).

35

Array Instance Variables

/@

A constructor (or mutator method) that accepts an array parameter

should instantiate an instance variable array and copy the
elements from the parameter array to the instance variable.

// constructor

public CellPhone (double[] bills)

{
// instantiate instance variable array
// with same length as parameter
cellBills = new double[bills.length];

// copy parameter array bills to cellBills array
for (int 1 = 0; 1 < cellBills.length; 1i++) {
cellBills[i] = bills[i];

Accessors for Arrays

Similarly, an accessor method for the array instance variable
should return a reference to a copy of the array.
public double[] getCellBills()

{

\

// instantiate temporary array
double[] temp = new double[cellBills.length];

// copy instance variable values to temp
for (int 1 = 0; 1 < cellBills.length; 1i++)
temp[1] = cellBills[1];

// return copy of array

return temp;

i

Sharing array references with the client
violates encapsulation.

— To accept an array as a parameter to a method,
Instantiate an instance variable array and copy
the elements of the parameter array to the
Instance variable.

— Similarly, to return an instance variable array, a
method should copy the elements of the
Instance variable array to a temporary array and
return a reference to the temporary array.

38

Copying Arrays

« The System class has an arraycopy() method that you can
use to efficiently copy data from one array to another

public =static woid arraycopy (Cbhject =rc, int =rcPos,
Cbject dest, int destPo=s, int length)

« The two Object arguments specify the array to copy from
and the array to copy to.

« The three int arguments specify the starting position in the
source array, the starting position in the destination array,
and the number of array elements to copy.

39

Copying Arrays
- The following program, ArrayCopyDemo, declares an
array of char elements, spelling the word "decaffeinated."
It uses the System.arraycopy() method to copy a
subsequence of array components into a second array

clazz ArravCopvDemo {
public static wvold main(5String[] args) {
char[] copyFrom = { 'd4d', 'e', '¢c', 'a‘', 'f', 'If°*,

-_

IEI’-

Iilr Inlr Ialr It_lr IEI'- Ilj_l]_;

char[] copyTo = new char[7]:

System.arraycopy (copyvFrom, 2, copyIo, 0, T):
Syastem.out.println(new String(copyTo)):

The output from this program is:

caffein

40

Array Manipulations

Arrays are a powerful and useful concept used In
programming

Java SE provides methods to perform some of the
most common manipulations related to arrays

As we have seen, the ArrayCopyDemo example
uses the arraycopy() method of the System class
Instead of manually iterating through the elements
of the source array and placing each one into the
destination array

This is performed behind the scenes, enabling the

developer to use just one line of code to call the
method 41

Array Manipulations

» For your convenience, Java SE provides several
methods for performing array manipulations
(common tasks, such as copying, sorting and
searching arrays) in the java.util.Arrays class.

The previous example can be modified to use the
CopyOfRange() method of the java.util.Arrays
class

The difference is that using the CopyOfRange()
method does not require you to create the

destination array before calling the method,

because the destination array Is returned by the
method 42

Array Manipulations

* The output from this progfam is the sarar}e
(caffein), although it requires fewer lines of code.

clazzs ArravCopvyvOfDemo {
public static vold main(S5tring[] args) {

EhEI.I[] EDPFFIDI&: {Idlt IEI’- Iclr Ialt Iflt I:EIF IEI'-
Iilr Inlr Ialr It_lr IEIF Ilj_l]':.

char|[] copvIo = java.util.bArrays.copyOfRange (copyFrom, 2, 9):;

System.out.println(new String(copvyIo)):;

43

Array Manipulations

Some other useful operations provided by methods
In the java.util.Arrays class, are:

« Searching an array for a specific value to get the
Index at which it is placed (the binarySearch()
method).

« Comparing two arrays to determine if they are
equal or not (the equals() method).

 Filling an array to place a specific value at each
Index (the fill() method).

 Sorting an array into ascending order using the

sort() method
44

The syntax of an array parameter for a method might
look familiar. \We've seen it repeatedly in the
header for the main method:

public static void main (String[] args)
main receives a String array as a parameter. That
array holds the arguments, if any, that the user
sends to the program from the command line.

For example, command line arguments might be:
— the name of a file for the program to use
— configuration preferences

45

Printing Command Line Arguments

public static void main(String[] args)

{

System.out.println("The number of parameters "

+ " 1s " + args.length);

for (int 1 = 0; 1 < args.length; i++)
{
System.out.println("args[" + 1 + "]: "
args[i] V;

46

