
 Lecture 13 & 14

Dr. Martin O’Connor

CA166

www.computing.dcu.ie/~moconnor

Single Dimensional Arrays

Table of Contents

• Declaring and Instantiating Arrays

• Accessing Array Elements

• Writing Methods that Process Arrays

• Aggregate Array Operations

• Using Arrays in Classes

• Manipulating Arrays

• Command line arguments

2

Arrays

• An array is a container object that holds a fixed

number of values of a single type

• The length of the array is established when the

array is created. After creation, its length is fixed

• An Example:

3

Arrays

• Arrays are used to store and manipulate a collection

of related values

• It would be impractical to use a sequence of variables

such as value1, value2, value3 and so on

• An array is a sequence of variables of the same data

type.

• The data type can be any of Java's primitive types

(int, short, byte, long, float, double, boolean, char),

or a class.

• Each item in an array is called an element.

• Each element is accessed by its numerical index
4

Declaring and Instantiating

Arrays

Arrays are objects, so creating an array

requires two steps:

1. declaring a reference to the array

2. instantiating the array

To declare a reference to the array, use this

syntax:
 datatype[] arrayName;

To instantiate an array, use this syntax:
 arrayName = new datatype[size];

 where size is an expression that evaluates

 to an integer and specifies the number of

 elements in the array.
5

Examples

Declaring arrays:
 double[] dailyTemps; // elements are doubles

 String[] cdTracks; // elements are Strings

 boolean[] answers; // elements are booleans

 Auto[] cars; // elements are Auto references

 int[] cs101, bio201; // two int arrays

Instantiating these arrays:
 dailyTemps = new double[365]; // 365 elements

 cdTracks = new String[15]; // 15 elements

 int numberOfQuestions = 30;

 answers = new boolean[numberOfQuestions];

 cars = new Auto[3]; // 3 elements

 cs101 = new int[5]; // 5 elements

 bio201 = new int[4]; // 4 elements 6

The Auto Class

• We will be using the Auto class as a simple

example throughout this lecture.

• The Auto class has three instance variables:

model, milesDriven, and gallonsOfGas

public class Auto

{

 private String model;

 private int milesDriven;

 private double gallonsOfGas;

}
7

Default Values for Elements

When an array is instantiated, the elements

are assigned default values according to the

array data type.

 Array data type Default value

byte, short, int, long 0

float, double 0.0

char The null character

boolean false

Any object reference

 (for example, a String)

null

8

Combining the Declaration and

Instantiation of Arrays

• One way to create an array is with the new

operator

Syntax:
 datatype[] arrayName = new datatype[size];

Examples:
 double[] dailyTemps = new double[365];

 String[] cdTracks = new String[15];

 int numberOfQuestions = 30;

 boolean[] answers = new boolean[numberOfQuestions];

 Auto[] cars = new Auto[3];

 int[] cs101 = new int[5], bio201 = new int[4];

9

Assigning Initial Values to Arrays

Arrays can be instantiated by specifying a list of

initial values.
Syntax:

 datatype[] arrayName = { value0, value1, … };

 where valueN is any expression evaluating to

 the data type of the array and is the value

 to assign to the element at index N.

Examples:

 int nine = 9;

 int[] oddNumbers = { 1, 3, 5, 7, nine, nine + 2,

 13, 15, 17, 19 };

 Auto sportsCar = new Auto("Ferrari", 0, 0.0);

 Auto[] cars = { sportsCar, new Auto(),

 new Auto("BMW", 100, 15.0) }; 10

• An initialization list can be given only when

the array is declared.

– Attempting to assign values to an array using an

initialization list after the array is instantiated

will generate a compiler error.

• The new keyword is not used when an array

is instantiated using an initialization list.

Also, no size is specified for the array; the

number of values in the initialization list

determines the size of the array.

Common Error Trap

11

• When declaring an array, you can also place the

brackets after the array’s name
 double dailyTemps[]; // elements are doubles

• !DO NOT DO THIS!

• The Java programming convention strongly

discourages this style of declaration.

• Why? brackets are used to both indicate and

identify an array type and consequently, should

always appear beside the type declaration.

 double[] dailyTemps; // elements are doubles

Common Error Trap

12

Accessing Array Elements

• To access an element of an array, use this syntax:

 arrayName[exp]

 where exp is an expression that

 evaluates to an integer.

• exp is the element's index — its position within

the array.

• The index of the first element in an array is 0.

• length is a public, constant integer instance

variable that holds the number of elements in the

array and is accessed using this syntax:

 arrayName.length

• Example: dailyTemps.length
•

13

Attempting to access an element of an array using an

index less than 0 or greater than arrayName.length -

1 will generate an ArrayIndexOutOfBoundsException

at run time.

Note that for an array, length – without parentheses – is

an instance variable, whereas for Strings, length() –

with parentheses – is a method.

Note also that the array's instance variable is named

length, rather than size.

Common Error Trap

14

Accessing Array Elements

Element Syntax

Element 0 arrayName[0]

Element i arrayName[i]

Last element arrayName[arrayName.length - 1]

15

Accessing Array Elements

16

Another Example

cellBills Array

When instantiated: After assigning

values:

17

Instantiating an Array of Objects

To instantiate an array with a class data type:

 1. instantiate the array (elements are object
 references, initialized to null)

 2. instantiate the objects
Example:
 // instantiate array; all elements are null

 Auto[] cars = new Auto[3];

 // instantiate objects and assign to elements

 Auto sportsCar = new Auto("Miata", 100, 5.0);

 cars[0] = sportsCar;

 cars[1] = new Auto();

 // cars[2] is still null

18

Aggregate Array Operations

We can perform the same operations on arrays

as we do on a series of input values.

– calculate the total of all values

– count values meeting specified criteria

– find the average value

– find a minimum or maximum value, etc.

To perform an operation on all elements in an

array, we use a for loop to perform the

operation on each element in turn.

19

Standard for Loop Header

for Array Operations

for (int i = 0; i < arrayName.length; i++)

– initialization statement (int i = 0) creates index i

and sets it to the first element (0).

– loop condition (i < arrayName.length) continues

execution until the end of the array is reached.

– loop update (i++) increments the index to the next

element, so that we process each element in order.

Inside the for loop, we reference the current

element as:
 arrayName[i]

20

Printing All Elements of an Array

Example: This code prints each element in an

array named cellBills, one element per line

(assuming that cellBills has been

instantiated as an array of doubles):

for (int i = 0; i < cellBills.length; i++)

{

 System.out.println(cellBills[i]);

}

21

Reading Data Into an Array

Example: this code reads values from the user

into an array named cellBills, which has

previously been instantiated:

 Scanner scan = new Scanner(System.in);

 for (int i = 0; i < cellBills.length; i++)

 {

 System.out.print("Enter bill > ");

 cellBills[i] = scan.nextDouble();

 }

• Note: the above code has no error checking
22

Calculating a Total

Example: this code calculates the total value

of all elements in an array named cellBills,

which has previously been instantiated:

 double total = 0.0; // initialize total

 for (int i = 0; i < cellBills.length; i++)

 {

 total += cellBills[i];

 }

 System.out.println("The total is " + total);

23

Finding Maximum/Minimum Values

Example: this code finds the index of the

maximum value in an array named cellBills:
 // make first element the current maximum

 int maxIndex= 0;

 // start for loop at element 1

 for (int i = 1; i < cellBills.length; i++)

 {

 if (cellBills[i] > cellBills[maxIndex])

 maxIndex = i;

 }

 System.out.println("The maximum is "

 + cellBills[maxIndex]);

24

Copying Arrays

Suppose we want to copy the elements of an

array to another array. We could try this code:

 double[] billsBackup = new double [6];

 billsBackup = cellBills; // incorrect!

Although this code compiles, it is logically

incorrect! We are copying the cellBills object

reference to the billsBackup object reference.

We are not copying the array data.

The result of this code is shown on the next slide

->
 25

Copying Array References
 billsBackup = cellBills;

 The line of code above line has this effect.

Both references point to the same array.

26

Copying Array Values

Example: this code copies the values of all elements in

an array named cellBills to an array named

billsBackup, both of which have previously been

instantiated with the same length:

 for (int i = 0; i < cellBills.length; i++)

 {

 billsBackup[i] = cellBills[i];

 }

The effect of this for loop is shown on the next slide ->

27

Copying Array Values

A separate copy of the array has been created.

28

Changing an Array's Size

An array's length instance variable is constant.

– that is, arrays are assigned a constant size

when they are instantiated.

To expand an array while maintaining its

original values:
1. Instantiate a new array with the new size and a

temporary name.

2. Copy the original elements to the new array.

3. Then point the original array reference to the new

array.

4. Assign a null value to the temporary array reference.

 29

Expanding the Size of an Array

This code expands the size of the cellBills array from 6

elements to 12 elements:

 //instantiate new array with a temporary name

 double[] temp = new double[12];

 // copy all elements from cellBills to temp

 for (int i = 0; i < cellBills.length; i++)

 {

 temp[i] = cellBills[i]; // copy each element

 }

 // point cellBills to new array

 cellBills = temp;

 temp = null; // assign null to temp reference
30

Comparing Arrays for Equality

To compare whether the elements of two arrays are

equal:

1. Determine if both arrays have the same length.

2. Compare each element in the first array with the

corresponding element in the second array.

To do this, we'll use a flag variable and a for loop.

At the end of the code, the value of the flag variable

isEqual will indicate whether the arrays are

equal.

31

Comparing cellBills1 to cellBills2

boolean isEqual = true; // flag variable

if (cellBills1.length != cellBills2.length) {

 isEqual = false; // sizes are different

} else {

 for (int i = 0; i < cellBills1.length && isEqual; i++)

 {

 if (Math.abs(cellBills1[i] - cellBills2[i]) > 0.001)

 {

 isEqual = false; // elements are not equal

 }

 }

}

32

Using Arrays in Classes

In a user-defined class, an array can be

– an instance variable

– a parameter to a method

– a return value from a method

– a local variable in a method

33

Methods with Array Parameters

To define a method that takes an array as a
parameter, use this syntax:

 accessModifier returnType methodName(

 dataType[] arrayName)

To define a method that returns an array, use
this syntax:

 accessModifier dataType[] methodName(

 parameterList)

To pass an array as an argument when calling

a method, use the array name without
brackets:

 methodName(arrayName)

34

If you think of the brackets as being part of

the data type of the array, then it's easy to

remember that

– brackets are included in the method header (or

method signature) where the data types of

parameters are given

– brackets are not included in method calls

(where the data itself is given).

Common Error Trap

35

Array Instance Variables
A constructor (or mutator method) that accepts an array parameter

should instantiate an instance variable array and copy the

elements from the parameter array to the instance variable.

 // constructor

 public CellPhone(double[] bills)

 {

 // instantiate instance variable array

 // with same length as parameter

 cellBills = new double[bills.length];

 // copy parameter array bills to cellBills array

 for (int i = 0; i < cellBills.length; i++) {

 cellBills[i] = bills[i];

 }

 } 36

Accessors for Arrays

Similarly, an accessor method for the array instance variable

should return a reference to a copy of the array.

public double[] getCellBills()

{

 // instantiate temporary array

 double[] temp = new double[cellBills.length];

 // copy instance variable values to temp

 for (int i = 0; i < cellBills.length; i++)

 temp[i] = cellBills[i];

 // return copy of array

 return temp;

}

37

Sharing array references with the client

violates encapsulation.

– To accept an array as a parameter to a method,

instantiate an instance variable array and copy

the elements of the parameter array to the

instance variable.

– Similarly, to return an instance variable array, a

method should copy the elements of the

instance variable array to a temporary array and

return a reference to the temporary array.

SOFTWARE

ENGINEERING TIP

38

Copying Arrays

• The System class has an arraycopy() method that you can

use to efficiently copy data from one array to another

• The two Object arguments specify the array to copy from

and the array to copy to.

• The three int arguments specify the starting position in the

source array, the starting position in the destination array,

and the number of array elements to copy.

39

Copying Arrays

• The following program, ArrayCopyDemo, declares an

array of char elements, spelling the word "decaffeinated."

It uses the System.arraycopy() method to copy a

subsequence of array components into a second array

40

Array Manipulations

• Arrays are a powerful and useful concept used in

programming

• Java SE provides methods to perform some of the

most common manipulations related to arrays

• As we have seen, the ArrayCopyDemo example

uses the arraycopy() method of the System class

instead of manually iterating through the elements

of the source array and placing each one into the

destination array

• This is performed behind the scenes, enabling the

developer to use just one line of code to call the

method 41

Array Manipulations

• For your convenience, Java SE provides several

methods for performing array manipulations

(common tasks, such as copying, sorting and

searching arrays) in the java.util.Arrays class.

• The previous example can be modified to use the

CopyOfRange() method of the java.util.Arrays

class

• The difference is that using the CopyOfRange()

method does not require you to create the

destination array before calling the method,

because the destination array is returned by the

method 42

Array Manipulations

• The output from this program is the same

(caffein), although it requires fewer lines of code.

43

Array Manipulations

Some other useful operations provided by methods

in the java.util.Arrays class, are:

• Searching an array for a specific value to get the

index at which it is placed (the binarySearch()

method).

• Comparing two arrays to determine if they are

equal or not (the equals() method).

• Filling an array to place a specific value at each

index (the fill() method).

• Sorting an array into ascending order using the

sort() method
44

Retrieving Command Line Arguments

The syntax of an array parameter for a method might

look familiar. We've seen it repeatedly in the

header for the main method:
 public static void main(String[] args)

 main receives a String array as a parameter. That

array holds the arguments, if any, that the user

sends to the program from the command line.

For example, command line arguments might be:

– the name of a file for the program to use

– configuration preferences

45

Printing Command Line Arguments

public static void main(String[] args)

{

 System.out.println("The number of parameters "

 + " is " + args.length);

 for (int i = 0; i < args.length; i++)

 {

 System.out.println("args[" + i + "]: "

 + args[i]);

 }

}

46

