Lecture 20

Java
Exceptional Event Handling

Dr. Martin O’Connor

CA166
WWWw.computing.dcu.ie/~moconnor

What is an Exception?

Exception Handler

Catch or Specify Requirement

Three Kinds of Exceptions

What are Checked Exceptions?

Three Components to Handling Exceptions
The try, catch, and finally Blocks
Exceptions Thrown by a Method

How to Throw Exceptions

The throw Statement

What 1s an Exception?

» The Java programming language uses
exceptions to handle errors and other
exceptional events

« What Is an exception?

An exception Is an event that occurs during the
execution of a program that disrupts the normal
flow of Instructions.

» The term exception is shorthand for the
phrase "exceptional event."

Throwing an Exception

« \When an error occurs within a method, the method
creates an object and hands it off to the runtime
system

* The object, called an exception object, contains
Information about the error, including its type and
the state of the program when the error occurred.

 Creating an exception object and handing it to the
runtime system is called throwing an exception

Throwing an Exception

« After a method throws an exception, the runtime
system attempts to find something to handle it

» The set of possible "somethings" to handle the
exception Is the ordered list of methods that had
been called to get to the method where the error
occurred

e The list of methods i1s known as the call stack

Exception Handler

e The Call Stack Method where error occurred <—
Method call

Method without an exception
handler -

Method call

Method with an exception ——
handler +—

Method call

Malr _

 The runtime system searches the call stack for a
method that contains a block of code that can
handle the exception

 This block of code is called an exception handler

Exception Handler

 The search begins with the method in which the
error occurred and proceeds through the call stack
In the reverse order in which the methods were

called

« \When an appropriate handler is found, the runtime

system passes the exception to the

« \What is considered an appropriate

nandler

nandler?

An exception handler is considered appropriate if
the type of the exception object thrown matches
the type that can be handled by the handler

» The exception handler chosen is said to catch the
exception

« |f the runtime system exhaustively searches all the
methods on the call stack without finding an
appropriate exception handler, the runtime system
(and, consequently, the program) terminates

Exception Handler

- s - s

 Searching the call stack for the exception handler

Throws exception — Method where error occurred Looking for
appropriate

. . handler

Forwards exception —| Method 1.rnr|trl1'|r::uhrlé| Iar: exception .

i Looking for
appropriate

Catches some | Method with an exception . ondier

other exception handler
main

Catch or Specify Requirement

« The Java runtime system requires that a method
must either catch or specify all checked exceptions
that can be thrown by that method

« This means that code that might throw certain
exceptions must be enclosed by either of the
following:

— A try statement that catches the exception. The try must
provide a handler for the exception (explained later)

— A method that specifies that it can throw the exception.
The method must provide a throws clause that lists the

exception (explained later)
10

» Code that fails to honour the Catch or Specify
Requirement will not compile

» Note: not all exceptions are subject to the Catch or
Specify Requirement

« To understand why, we need to look at the three
basic categories of exceptions, only one of which
IS subject to the Requirement

11

The first kind of exception is the checked
exception

These are exceptional conditions that a well-
written application should anticipate and recover
from

For example, attempting to open a file using a
user-supplied name of a nonexistent file. This will
throw an java.io.FileNotFoundException

A well-written program will catch this exception
and notify the user of the mistake, possibly
prompting for a corrected file name 12

The second kind of exception Is the error

These are exceptional conditions that are external
to the application, and that the application usually
cannot anticipate or recover from

For example, unable to read a file because of a
hardware or system malfunction. The unsuccessful
read will throw java.io.lOError

Errors are not subject to the Catch or Specify
Requirement.

13

« The third kind of exception is the runtime
exception

» These are exceptional conditions that are internal
to the application, and that the application usually
cannot anticipate or recover from. These include:

— arithmetic exceptions (such as when dividing by zero),

— pointer exceptions (such as trying to access an object
through a null reference),

— Indexing exceptions (such as attempting to access an
array element through an index that is too large or too
small)

14

« Runtime exceptions are not subject to the Catch or
Specify Requirement

 Errors and runtime exceptions are collectively
known as unchecked exceptions

15

What are Checked Exceptions?

« Checked exceptions are subject to the Catch or *
Specify Requirement

» Note: the compiler ensures that checked exceptions
are caught or specified

» The unchecked exceptions classes are the class
RuntimeException and its subclasses, and the
class Error and its subclasses.

» The checked exception classes are all exception
classes other than the unchecked exception

classes. 16

» There are three exception handler components to
writing an exception handler.

— try block

— catch block

_ finally block

17

The try Block

« The first step In constructing an exception handler is
to enclose the code that might throw an exception
within a try block

 |n general, a try block looks like the following
try {

catch and finally blocks . . .

» The segment in the example labelled code contains
one or more legal lines of code that could throw an
exception 18

The try Block

_—

N

» For example, a try block when creating a new file
for Writing. private static fimal int SIZE = 10;

PrintWriter out = null;

try {
System.out.println("Entered try statement");

out = new PrintWriter(new FileWriter ("OutFile.txt"));
for (int 1 = 0; 1 <« SIZE; it+) {
cut.println("Value at: " + i + " = " + list.get(i));

catch and finally statemsnts . . .

If an exception occurs within the try block, that
exception is handled by an exception handler
associated with It.

» To associate an exception handler with a try block,

you must put a catch block after it o

The try Block

Two approaches

 |f you have a block of code that might throw several
exceptions, there are two approaches to handling
them

* You can put each line of code that might throw an
exception within its own try block and provide
separate exception handlers for each

 Or, you can put all the code within a single try block
and associate multiple handlers with it

20

The catch Block

—

» You associate exception handlers with a try block by
providing one or more catch blocks directly after the
try block.

s

* No code can be between the end of the try block and
the beginning of the first catch block

try {
statements

} catch (ExceptionType name) {
statements

} catch (ExceptionType name) {
ztatements

21

/ The catch Block |
\ . 4

« Each catch block Is an exception handler and :
handles the type of exception indicated by its
argument

”~

« The argument type, ExceptionType, declares the type
of exception that the handler can handle and must be
the name of a class that inherits from the Throwable

class

« The handler can refer to the exception with name

22

/ The catch Block |
\ 4

-

,
B

e The catch block contains code that Is executed 1f and
when the exception handler is invoked

« The runtime system invokes the exception handler
when the handler is the first one in the call stack
whose ExceptionType matches the type of the
exception thrown

» The system considers it a match if the thrown object
can legally be assigned to the exception handler's

argument
23

The catch Block

1 o s asTEN

- An adaption of an example from
http://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

try {
FrintWriter out = new PrintWriter (new FileWriter ("OmtFile.txt"));

for (int 1 = 0; 1 <« SIZE; it++) {
out.println("Value at: " + 1 + " = " + list.get(1));
]
out.close () ;
} catch (FileNotFoundException e) {
System.err.println("FileNotFoundException: " + e.getMessage()});
throw new SampleException(e);

} catch (ICException e} {

System.err.println("Caught ICException: " + e.getMessage());
}

24

The catch Block

An excerpt of an example from
http://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

Both handlers print an error message. The second
handler does nothing else. By catching any
|OEXception that's not caught by the first handler, it
allows the program to continue executing

The first handler, in addition to printing a message,
throws a user-defined exception (to be covered later)

You might want to throw a user-defined exception if
you want your program to handle an exception in
this situation in a specific way. o5

/ The catch Block |

-

Y =

« EXxception handlers can do more than just print error
messages or halt the program

« They can do error recovery, prompt the user to make
a decision, or propagate the error up to a higher-
level handler using chained exceptions

26

/ The finally Block |
\. 4

o

« The finally block always executes when the try *

-

block exits

This ensures that the finally block 1s executed even
If an unexpected exception occurs

But finally is useful for more than just exception
handling — it allows the programmer to avoid
having cleanup code accidentally bypassed by a
return, continue, or break.

Putting cleanup code In a finally block is always a
good practice, even when no exceptions are
anticipated 4]

N 4

= ,

If the JVM exits while the try or catch code iIs
being executed, then the finally block may
not execute

Likewise, If the thread executing the try or
catch code is interrupted or killed, the
finally block may not execute even though
the application as a whole continues

28

The finally Block

« An example of a finally block that ensures the
Printwriter stream is closed.

finally {
if (out '= null) {
System.out.println("Closing PrintWriter™);
out.close () ;

« Note: All File input and output streams should be
closed before exiting the program.

— The finally block is a key tool for preventing resource
leaks. When closing a file or otherwise recovering
resources, place the code in a finally block to ensure that
resource Is always recovered 29

A Complete Example

- - -

« An adapted example from
http://docs.oracle.com/javase/tutorial/essential/exceptions/putltTogether.html

public void writeList() {
BrintWriter out = null;

try {
System.out.println("Entering” + " try statement");

out = new PrintWriter(new FileWriter("OutFile.t=xt"™));
for {(imt i = 0; i <« SIZE; it++)
out.println{"Value at: " + i + " = " + list.elementhAt(i)};

} catch (ArrayIndexCutCfBoundsException e} {
System.err.println("Caught ArrayIndexCutCfBoundsException:
+ e.getMessage());

"

} catch (ICException e} {
System.err.println("Caught ICExcepticon: " + e.getMessage());

} finally {
if (out !'= mull) {
System.out.println("Closing PrintWriter");
out.clao=se () ;

 |f a method doesn't catch the checked exceptions that
can occur within it, the method must specify that it can
throw these exceptions

 To specify a method can throw exceptions, add a
throws clause to the method declaration

« The throws clause comprises the throws keyword
followed by a comma-separated list of all the
exceptions thrown by that method

31

» The clause goes after the method name and argument
list and before the brace that defines the scope of the

method
* An example:

public void writeList() throws IOException, ArrayIndex(OutOfBoundsException {

« Remember that ArraylndexOutOfBoundsException is
an unchecked exception; including it in the throws
clause Is not mandatory. You could just write the

following

public void writeList() throws IOException {

32

» Before you can catch an exception, some code
somewhere must throw one

« Any code can throw an exception: your code, code from
a package written by someone else such as the packages
that come with the Java platform, or the Java runtime
environment

« Regardless of what throws the exception, it's always
thrown with the throw statement

85

» The Java platform provides numerous exception classes

 All the classes are descendants of the Throwable class,
and all allow programs to differentiate among the
various types of exceptions that can occur during the
execution of a program

* You can also create your own exception classes to

represent problems that can occur within the classes you
write

34

 All methods use the throw statement to throw an
exception. The throw statement requires a single
argument: a throwable object

» Throwable objects are instances of any subclass of the
Throwable class. Here's an example of a throw
statement

throw someThrowableObject;

35

The throw Statement

Let's look at the throw statement In context.

The following pop method is taken from a class that
Implements a common stack object.

The method removes the top element from the stack and

returns the object —
public Cbject pop() {

Cbject obi;

if (size == 0) {
throw new EmptyStackException() ;

obj = objectit(=size - 1);
setObjecthAt (size - 1, null);
zize——;

return obj;

36

The throw Statement

\. 4
» The pop method checks to see whether any elements are
on the stack.

* |f the stack Is empty (its size is equal to 0), pop
Instantiates a new EmptyStackException object (a
member of java.util) and throws it

 Note that the declaration of the pop method does not
contain a throws clause. EmptyStackException is not a
checked exception, so pop is not required to state that it

might occur
37

» The slides are based on the the Exceptions trail of the
Online Oracle Java Tutorial

» The Exceptions trail of the Online Oracle Java Tutorial
IS required reading. It may be viewed at:

http://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

38

