
 Lecture 20

Java

Exceptional Event Handling

Dr. Martin O’Connor

CA166

www.computing.dcu.ie/~moconnor

Topics

• What is an Exception?

• Exception Handler

• Catch or Specify Requirement

• Three Kinds of Exceptions

• What are Checked Exceptions?

• Three Components to Handling Exceptions

• The try, catch, and finally Blocks

• Exceptions Thrown by a Method

• How to Throw Exceptions

• The throw Statement
2

What is an Exception?

• The Java programming language uses

exceptions to handle errors and other

exceptional events

• What is an exception?

An exception is an event that occurs during the

execution of a program that disrupts the normal

flow of instructions.

• The term exception is shorthand for the

phrase "exceptional event."

3

Throwing an Exception

• When an error occurs within a method, the method

creates an object and hands it off to the runtime

system

• The object, called an exception object, contains

information about the error, including its type and

the state of the program when the error occurred.

• Creating an exception object and handing it to the

runtime system is called throwing an exception

4

Throwing an Exception

• After a method throws an exception, the runtime

system attempts to find something to handle it

• The set of possible "somethings" to handle the

exception is the ordered list of methods that had

been called to get to the method where the error

occurred

• The list of methods is known as the call stack

5

Exception Handler

• The Call Stack

• The runtime system searches the call stack for a

method that contains a block of code that can

handle the exception

• This block of code is called an exception handler

6

Exception Handler

• The search begins with the method in which the

error occurred and proceeds through the call stack

in the reverse order in which the methods were

called

• When an appropriate handler is found, the runtime

system passes the exception to the handler

• What is considered an appropriate handler?

An exception handler is considered appropriate if

the type of the exception object thrown matches

the type that can be handled by the handler
7

Exception Handler

• The exception handler chosen is said to catch the

exception

• If the runtime system exhaustively searches all the

methods on the call stack without finding an

appropriate exception handler, the runtime system

(and, consequently, the program) terminates

8

Exception Handler

• Searching the call stack for the exception handler

9

Catch or Specify Requirement

• The Java runtime system requires that a method

must either catch or specify all checked exceptions

that can be thrown by that method

• This means that code that might throw certain

exceptions must be enclosed by either of the

following:

– A try statement that catches the exception. The try must

provide a handler for the exception (explained later)

– A method that specifies that it can throw the exception.

The method must provide a throws clause that lists the

exception (explained later)

 10

Catch or Specify Requirement

• Code that fails to honour the Catch or Specify

Requirement will not compile

• Note: not all exceptions are subject to the Catch or

Specify Requirement

• To understand why, we need to look at the three

basic categories of exceptions, only one of which

is subject to the Requirement

11

Three Kinds of Exceptions

• The first kind of exception is the checked

exception

• These are exceptional conditions that a well-

written application should anticipate and recover

from

• For example, attempting to open a file using a

user-supplied name of a nonexistent file. This will

throw an java.io.FileNotFoundException

• A well-written program will catch this exception

and notify the user of the mistake, possibly

prompting for a corrected file name 12

Three Kinds of Exceptions

• The second kind of exception is the error

• These are exceptional conditions that are external

to the application, and that the application usually

cannot anticipate or recover from

• For example, unable to read a file because of a

hardware or system malfunction. The unsuccessful

read will throw java.io.IOError

• Errors are not subject to the Catch or Specify

Requirement.

13

Three Kinds of Exceptions

• The third kind of exception is the runtime

exception

• These are exceptional conditions that are internal

to the application, and that the application usually

cannot anticipate or recover from. These include:

– arithmetic exceptions (such as when dividing by zero),

– pointer exceptions (such as trying to access an object

through a null reference),

– indexing exceptions (such as attempting to access an

array element through an index that is too large or too

small)

14

Three Kinds of Exceptions

• Runtime exceptions are not subject to the Catch or

Specify Requirement

• Errors and runtime exceptions are collectively

known as unchecked exceptions

15

What are Checked Exceptions?

• Checked exceptions are subject to the Catch or

Specify Requirement

• Note: the compiler ensures that checked exceptions

are caught or specified

• The unchecked exceptions classes are the class

RuntimeException and its subclasses, and the

class Error and its subclasses.

• The checked exception classes are all exception

classes other than the unchecked exception

classes. 16

Three Components to Handling

Exceptions

• There are three exception handler components to

writing an exception handler.

– try block

– catch block

– finally block

17

The try Block

• The first step in constructing an exception handler is

to enclose the code that might throw an exception

within a try block

• In general, a try block looks like the following

• The segment in the example labelled code contains

one or more legal lines of code that could throw an

exception

18

The try Block

• For example, a try block when creating a new file

for writing.

• If an exception occurs within the try block, that

exception is handled by an exception handler

associated with it.

• To associate an exception handler with a try block,

you must put a catch block after it 19

The try Block

Two approaches

• If you have a block of code that might throw several

exceptions, there are two approaches to handling

them

• You can put each line of code that might throw an

exception within its own try block and provide

separate exception handlers for each

• Or, you can put all the code within a single try block

and associate multiple handlers with it

20

The catch Block

• You associate exception handlers with a try block by

providing one or more catch blocks directly after the

try block.

• No code can be between the end of the try block and

the beginning of the first catch block

21

The catch Block

• Each catch block is an exception handler and

handles the type of exception indicated by its

argument

• The argument type, ExceptionType, declares the type

of exception that the handler can handle and must be

the name of a class that inherits from the Throwable

class

• The handler can refer to the exception with name

22

The catch Block

• The catch block contains code that is executed if and

when the exception handler is invoked

• The runtime system invokes the exception handler

when the handler is the first one in the call stack

whose ExceptionType matches the type of the

exception thrown

• The system considers it a match if the thrown object

can legally be assigned to the exception handler's

argument
23

The catch Block

• An adaption of an example from
http://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

24

The catch Block

• An excerpt of an example from
http://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

• Both handlers print an error message. The second

handler does nothing else. By catching any

IOException that's not caught by the first handler, it

allows the program to continue executing

• The first handler, in addition to printing a message,

throws a user-defined exception (to be covered later)

• You might want to throw a user-defined exception if

you want your program to handle an exception in

this situation in a specific way.

25

The catch Block

• Exception handlers can do more than just print error

messages or halt the program

• They can do error recovery, prompt the user to make

a decision, or propagate the error up to a higher-

level handler using chained exceptions

26

The finally Block

• The finally block always executes when the try

block exits

• This ensures that the finally block is executed even

if an unexpected exception occurs

• But finally is useful for more than just exception

handling — it allows the programmer to avoid

having cleanup code accidentally bypassed by a

return, continue, or break.

• Putting cleanup code in a finally block is always a

good practice, even when no exceptions are

anticipated 27

 If the JVM exits while the try or catch code is

being executed, then the finally block may

not execute

Likewise, if the thread executing the try or

catch code is interrupted or killed, the

finally block may not execute even though

the application as a whole continues

Common Error Trap

28

The finally Block

• An example of a finally block that ensures the

Printwriter stream is closed.

• Note: All File input and output streams should be

closed before exiting the program.

– The finally block is a key tool for preventing resource

leaks. When closing a file or otherwise recovering

resources, place the code in a finally block to ensure that

resource is always recovered 29

A Complete Example

• An adapted example from
http://docs.oracle.com/javase/tutorial/essential/exceptions/putItTogether.html

30

Exceptions thrown by a Method

• If a method doesn't catch the checked exceptions that

can occur within it, the method must specify that it can

throw these exceptions

• To specify a method can throw exceptions, add a

throws clause to the method declaration

• The throws clause comprises the throws keyword

followed by a comma-separated list of all the

exceptions thrown by that method

31

Exceptions thrown by a Method

• The clause goes after the method name and argument

list and before the brace that defines the scope of the

method

• An example:

• Remember that ArrayIndexOutOfBoundsException is

an unchecked exception; including it in the throws

clause is not mandatory. You could just write the

following

32

How to Throw Exceptions

• Before you can catch an exception, some code

somewhere must throw one

• Any code can throw an exception: your code, code from

a package written by someone else such as the packages

that come with the Java platform, or the Java runtime

environment

• Regardless of what throws the exception, it's always

thrown with the throw statement

33

How to Throw Exceptions

• The Java platform provides numerous exception classes

• All the classes are descendants of the Throwable class,

and all allow programs to differentiate among the

various types of exceptions that can occur during the

execution of a program

• You can also create your own exception classes to

represent problems that can occur within the classes you

write

34

The throw Statement

• All methods use the throw statement to throw an

exception. The throw statement requires a single

argument: a throwable object

• Throwable objects are instances of any subclass of the

Throwable class. Here's an example of a throw

statement

35

The throw Statement

• Let's look at the throw statement in context.

• The following pop method is taken from a class that

implements a common stack object.

• The method removes the top element from the stack and

returns the object

36

The throw Statement

• The pop method checks to see whether any elements are

on the stack.

• If the stack is empty (its size is equal to 0), pop

instantiates a new EmptyStackException object (a

member of java.util) and throws it

• Note that the declaration of the pop method does not

contain a throws clause. EmptyStackException is not a

checked exception, so pop is not required to state that it

might occur
37

Required Reading

• The slides are based on the the Exceptions trail of the

Online Oracle Java Tutorial

• The Exceptions trail of the Online Oracle Java Tutorial

is required reading. It may be viewed at:

 http://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

38

