
 Lecture 23

Java

File Handling

Dr. Martin O’Connor

CA166

www.computing.dcu.ie/~moconnor

Topics

• File Systems

• What is a path?

• Symbolic links

• How to create a file

• How to obtain the file path from a file

• How to append data to a file

• How to delete a file

• How to rename a file

• How to get a file’s last modified date

• How to check if a file exists

• Java version 7+ New File handling classes

2

File Systems

• A file system stores and organizes files on some form

of media, generally one or more hard drives, in such a

way that they can be easily retrieved.

• Most file systems in use today store the files in a tree

(or hierarchical) structure

• At the top of the tree is one (or more) root nodes

• Under the root node, there are files and directories

(folders in Microsoft Windows)

• Each directory can contain files and subdirectories,

which in turn can contain files and subdirectories, and

so on 3

File Systems

• Consider the following sample directory tree

4

What is a Path?

• Microsoft Windows supports multiple root nodes.

Each root node maps to a volume, such as C:\ or D:\

and so on

• The Linux OS supports a single root node, which is

denoted by the slash character, /

• A file is identified by its path through the file system,

beginning from the root node

• For example, the statusReport file is described by the

following notation:

– /home/user2/statusReport (In Linux)

– C:\home\user2\statusReport (In Microsoft Windows)

5

What is a Path?

• The character used to separate the directory names

(also called the delimiter or file separator) is specific

to the file system

– The Linux OS uses the forward slash (/)

– Microsoft Windows uses the backslash slash (\)

• A path is either relative or absolute

– An absolute path always contains the root element and the

complete directory list required to locate the file

– For example, /home/user2/statusReport is an absolute

path. All of the information needed to locate the file is

contained in the path string

6

What is a Path?

• A relative path needs to be combined with another

path in order to access a file

– For example, joe/foo is a relative path

– Without more information, a program cannot reliably locate

the joe/foo directory in the file system

7

Symbolic Links

• File system objects are most typically directories or

files

• But some file systems also support the notion of

symbolic links.

– A symbolic link is also referred to as a symlink or a soft

link.

• A symbolic link is a special file that serves as a

reference to another file

8

Symbolic Links

• For the most part, symbolic links are transparent to

applications, and operations on symbolic links are

automatically redirected to the target of the link

• The file or directory being pointed to is called the

target of the link

• Exceptions are when a symbolic link is deleted, or

renamed in which case the link itself is deleted, or

renamed and not the target of the link

9

Example of a Symbolic Link

• In the following example, logFile appears to be a regular

file to the user, but it is actually a symbolic link to

dir/logs/HomeLogFile

10

Example of a Symbolic Link

• A symbolic link is usually transparent to the user

• Reading or writing to a symbolic link is the same as

reading or writing to any other file or directory

• The phrase resolving a link means to substitute the

actual location in the file system for the symbolic link

• In the previous example, resolving logFile yields

dir/logs/HomeLogFile

11

How to create a file

(one way among many)

12

How to construct a file path

(independent of Operating System)

• Use the following to get the current working

directory (folder)

• Use File.separator to obtain the separator

for the underlying operating system

– Windows = \ E.g.: C:\temp\test.txt

– Unix = / E.g.: /home/users/text.txt

13

How to construct a file path

(independent of the Operating System)

14

How to construct a file path

(independent of Operating System)

• The output from program FilePathExample

is:

15

How to get the file path

of a file

• The File.getAbsolutePath() will give you the full

complete path name (filepath + filename) of a file

• To retrieve the file path without the file name, use

substring() and lastIndexOf()

16

How to get the file path

of a file

17

How to append data to a file

• Recall: FileWriter, a character stream to write

characters to file

• By default, it will replace all the existing content with

new content

• However, when you specified a true (boolean) value as

the second argument in FileWriter constructor, it will

keep the existing content and append the new content in

the end of the file

18

How to append data to a file

• Thus:

to Replace all existing content with new content, use:

 new FileWriter(file);

• To keep the existing content and append the new

content in the end of the file, use:

 new FileWriter(file, true);

• You should use the techniques described in the

lecture on Input/Output (I/O) streams to read input

and write output to files.

19

How to delete a file

• Invoke the File.delete() method to delete a file

20

How to rename a file

• Invoke the File.renameTo() method to rename (or

move) a file

21

How to get the

file last modified date

• Invoke the File.lastModified() method to get the file’s

last modified timestamp

 Output:
22

How to check if a file exists

• Invoke the File.exists() method

23

File Processing

• You are expected to be able to use all of the

programming constructs and structures encountered

during this module in conjunction with file processing.

For example:

– String and numeric processing

– Iterative processing (For loops and while loops)

– Branch processing (Break, continue, return)

– Process Command line arguments

– Read and process text (and data) from input files

– Write processed text (and data) to output files

– Use exceptions where required

• Don’t forget to close streams in a finally block!

24

Java 7+

• Up to and including Java version 6, The java.io.File

class provided both file location and file system

operations.

• With Java 7, a new second approach was introduced that

splits the functionality of the java.io.File class in two:

– The new Path class provides just file location operations and

additional path-related operations.

– The new Files class provides file system operations (e.g.:

create, copy, move, delete, read, write and so on)

25

Java 7+

• Java 7 (nio stands for New I/O)

– import java.nio.file.Path

– import java.nio.file.Files

• In Java7+, the java.io.File class provides the toPath

method, which converts an old style File instance to a

java.nio.file.Path instance

• Example of updating Java 6 code to Java 7 code:

To delete a file:

– PreJava7 Code: file.delete();

– Java7+ Code: Path fp = file.toPath();

 Files.delete(fp);

26

Acknowledgements

• The slides are based on:

– The Oracle Online Java Tutorial and

– The Mkyong Java I/O Tutorial

http://www.mkyong.com/tutorials/java-io-tutorials/

27

