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Topics 

• File Systems 

• What is a path? 

• Symbolic links 

• How to create a file 

• How to obtain the file path from a file 

• How to append data to a file 

• How to delete a file 

• How to rename a file 

• How to get a file’s last modified date 

• How to check if a file exists 

• Java version 7+ New File handling classes 
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File Systems 

• A file system stores and organizes files on some form 

of media, generally one or more hard drives, in such a 

way that they can be easily retrieved. 
 

• Most file systems in use today store the files in a tree 

(or hierarchical) structure 
 

• At the top of the tree is one (or more) root nodes 
 

• Under the root node, there are files and directories 

(folders in Microsoft Windows) 

• Each directory can contain files and subdirectories, 

which in turn can contain files and subdirectories, and 

so on 3 



File Systems 

• Consider the following sample directory tree 

4 



What is a Path? 

• Microsoft Windows supports multiple root nodes. 

Each root node maps to a volume, such as C:\ or D:\ 

and so on 
 

• The Linux OS supports a single root node, which is 

denoted by the slash character, / 
 

• A file is identified by its path through the file system, 

beginning from the root node 
 

• For example, the statusReport file is described by the 

following notation: 

– /home/user2/statusReport    (In Linux) 

– C:\home\user2\statusReport    (In Microsoft Windows) 
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What is a Path? 

• The character used to separate the directory names 

(also called the delimiter or file separator) is specific 

to the file system 

– The Linux OS uses the forward slash (/) 

– Microsoft Windows uses the backslash slash (\) 
 

• A path is either relative or absolute 

– An absolute path always contains the root element and the 

complete directory list required to locate the file 

– For example, /home/user2/statusReport is an absolute 

path. All of the information needed to locate the file is 

contained in the path string 
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What is a Path? 

 

• A relative path needs to be combined with another 

path in order to access a file 

 

– For example, joe/foo is a relative path 

 

– Without more information, a program cannot reliably locate 

the joe/foo directory in the file system 
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Symbolic Links 

• File system objects are most typically directories or 

files 
 

• But some file systems also support the notion of 

symbolic links.  

– A symbolic link is also referred to as a symlink or a soft 

link. 
 

• A symbolic link is a special file that serves as a 

reference to another file 
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Symbolic Links 

• For the most part, symbolic links are transparent to 

applications, and operations on symbolic links are 

automatically redirected to the target of the link 

 

• The file or directory being pointed to is called the 

target of the link 

 

• Exceptions are when a symbolic link is deleted, or 

renamed in which case the link itself is deleted, or 

renamed and not the target of the link 
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Example of a Symbolic Link 

• In the following example, logFile appears to be a regular 

file to the user, but it is actually a symbolic link to 

dir/logs/HomeLogFile 
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Example of a Symbolic Link 

• A symbolic link is usually transparent to the user 

 

• Reading or writing to a symbolic link is the same as 

reading or writing to any other file or directory 

 

• The phrase resolving a link means to substitute the 

actual location in the file system for the symbolic link 

 

• In the previous example, resolving logFile yields 

dir/logs/HomeLogFile 
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How to create a file 

(one way among many) 
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How to construct a file path 

(independent of Operating System) 

• Use the following to get the current working 

directory (folder) 

 

 

• Use File.separator to obtain the separator 

for the underlying operating system 

– Windows = \   E.g.: C:\temp\test.txt 

– Unix = /   E.g.: /home/users/text.txt 
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How to construct a file path 

(independent of the Operating System) 
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How to construct a file path 

(independent of Operating System) 

 

• The output from program FilePathExample 

is: 
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How to get  the file path 

of a file 

• The File.getAbsolutePath() will give you the full 

complete path name (filepath + filename) of a file 

 

 

 

 

 

• To retrieve the file path without the file name, use 

substring() and lastIndexOf() 
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How to get  the file path 

of a file 
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How to append data to a file 

• Recall: FileWriter, a character stream to write 

characters to file 
 

• By default, it will replace all the existing content with 

new content 
 

• However, when you specified a true (boolean) value as 

the second argument in FileWriter constructor, it will 

keep the existing content and append the new content in 

the end of the file 
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How to append data to a file 

• Thus:  

to Replace all existing content with new content, use: 

  new FileWriter(file); 

 

• To keep the existing content and append the new 

content in the end of the file, use: 

  new FileWriter(file, true); 

 

• You should use the techniques described in the 

lecture on Input/Output (I/O) streams to read input 

and write output to files. 
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How to delete a file 

• Invoke the File.delete() method to delete a file 
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How to rename a file 

• Invoke the File.renameTo() method to rename (or 

move) a file 
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How to get the  

file last modified date 

• Invoke the File.lastModified() method to get the file’s 

last modified timestamp 

 

 

 

 

 

 

 
 

    Output: 
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How to check if a file exists 

• Invoke the File.exists() method 
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File Processing 

• You are expected to be able to use all of the 

programming constructs and structures encountered 

during this module in conjunction with file processing. 

For example: 

– String and numeric processing 

– Iterative processing (For loops and while loops) 

– Branch processing (Break, continue, return) 

– Process Command line arguments 

– Read and process text (and data) from input files 

– Write processed text (and data) to output files 

– Use exceptions where required 

• Don’t forget to close streams in a finally block! 
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Java 7+ 

• Up to and including Java version 6, The java.io.File 

class provided both file location and file system 

operations.  
 

• With Java 7, a new second approach was introduced that 

splits the functionality of the java.io.File class in two: 

 

– The new Path class provides just file location operations and 

additional path-related operations. 

 

– The new Files class provides file system operations (e.g.: 

create, copy, move, delete, read, write and so on) 
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Java 7+ 

• Java 7  (nio stands for New I/O) 

– import java.nio.file.Path 

– import java.nio.file.Files 
 

• In Java7+, the java.io.File class provides the toPath 

method, which converts an old style File instance to a 

java.nio.file.Path instance 

• Example of updating Java 6 code to Java 7 code:   

To delete a file: 

– PreJava7 Code:   file.delete(); 

– Java7+ Code:   Path fp = file.toPath(); 

     Files.delete(fp); 
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