
 Lecture 22

Java

Input/Output (I/O) Streams

Dr. Martin O’Connor

CA166

www.computing.dcu.ie/~moconnor

Topics

• I/O Streams

• Writing to a Stream

• Byte Streams

• Character Streams

• Line-Oriented I/O

• Buffered I/O Streams

• Scanning and Formatting

2

I/O Streams

• An I/O Stream represents an input source or

an output destination

• A stream can represent many different kinds

of sources and destinations, including:

– disk files,

– peripheral devices,

– other programs,

– network sockets

3

I/O Streams

• Streams support many different kinds of

data, including simple bytes, primitive data

types, localized characters, and objects

• Some streams simply pass on data; others

manipulate and transform the data in useful

ways

• No matter how they work internally, all

streams present the same simple model to

programs that use them
4

Reading from a Stream

• A stream is a sequence of data

• A program uses an input stream to read data

from a source, one item at a time

5

Writing to a Stream

• A program uses an output stream to write data to a

destination, one item at time

• The data source and data destination can be anything

that holds, generates, or consumes data

• These includes disk files, another program, a

peripheral device, or a network socket 6

Byte Streams

• Programs use byte streams to perform input and output

of 8-bit bytes

• All byte stream classes are descended from the

InputStream and OutputStream classes

• There are many byte stream classes

• We'll focus on the file I/O byte streams,

FileInputStream and FileOutputStream

• Other kinds of byte streams are used in much the same

way; they differ mainly in the way they are constructed

7

Byte Streams

• A program named

CopyBytes which

uses byte streams to

copy a textfile

one byte at a time

8

Byte Streams

• CopyBytes spends most of its time in a simple loop that

reads the input stream and writes the output stream, one

byte at a time

9

Byte Streams

• Notice that read() returns an int value

• If the input is a stream of bytes, why doesn't read()

return a byte value?

10

Byte Streams

• Answer: Using a int as a return type allows read() to use

-1 to indicate that it has reached the end of the stream

11

• NOTE: Closing a stream when it's no longer

needed is very important

• CopyBytes uses a finally block to guarantee

that both streams will be closed even if an

error occurs. This practice helps avoid

serious resource leaks

Common Error Trap

12

Byte Streams

• Byte Streams are a low-level I/O which in practice, you

will not use often

• For files with character data, you will use character

streams.

• There are also streams for more complicated data types.

Thus, Byte streams should only be used for the most

primitive I/O

• So why talk about byte streams? Because all other

stream types are built on byte streams

13

Character Streams

• The Java platform stores character values using Unicode

conventions

• Character stream I/O automatically translates this

internal format to and from the local character set

• In Western locales, the local character set is usually an

8-bit superset of ASCII

• For most applications, I/O with character streams is no

more complicated than I/O with byte streams

• If internationalization isn't a priority, you may use the

character stream classes without paying much attention

to character set issues.
14

Using Character Streams

• All character stream classes are descended from the

Reader and Writer classes

• As with byte streams, there are character stream classes

that specialize in file I/O: FileReader and FileWriter

• The program CopyCharacters illustrates these classes.

15

Using Character Streams

16

Using Character Streams

• CopyCharacters is very similar to CopyBytes

• The most important difference is that CopyCharacters

uses FileReader and FileWriter for input and output in

place of FileInputStream and FileOutputStream

• Notice that both CopyBytes and CopyCharacters use an

int variable to read to and write from

• However, in CopyCharacters, the int variable holds a

character value in its last 16 bits; in CopyBytes, the int

variable holds a byte value in its last 8 bits. Why?
17

Using Character Streams

• Example: Reading the characters in from a file and printing

them to screen.

• Note: in.read() returns

an int. To obtain the

char value from the int,

use a type cast:

inputChar = (char) c;

18

Using Character Streams

• Character streams are often "wrappers" for byte streams

• The character stream uses the byte stream to perform the

physical I/O, while the character stream handles

translation between characters and bytes

• FileReader, for example, uses FileInputStream, while

FileWriter uses FileOutputStream.

• Note: A FileWriter object can be instantiated from a

File object (An abstract representation of file and

directory pathnames)

19

Using Character Streams

• FileWriter has many constructors

20

Line-Oriented I/O

• Character I/O usually occurs in bigger units than single

characters

• One common unit is the line: a string of characters with

a line terminator at the end.

• A line terminator can be a carriage-return/line-feed

sequence ("\r\n"), a single carriage-return ("\r"), or a

single line-feed ("\n")

• Supporting all possible line terminators allows programs

to read text files created on any of the widely used

operating systems
21

Line-Oriented I/O

• Let's modify the CopyCharacters program to use line-

oriented I/O

• we need to use two new classes: BufferedReader and

PrintWriter

• The CopyLines program on the next slide invokes

BufferedReader.readLine and PrintWriter.println to do

input and output one line at a time

22

Line-Oriented I/O

23

Line-Oriented I/O

• Invoking inputStream.readLine() reads in a line of text

from the input file

• Invoking outputStream.println() writes out a line of text

to the output file and appends the line terminator for the

current operating system

• NOTE: the line terminator for the current operating

system might not be the same line terminator that was

used in the input file

24

Buffered I/O Streams

• Most of the examples we've seen so far use unbuffered

I/O

• This means each read or write request is handled directly

by the underlying OS

• This makes a program much less efficient, since each

such request often triggers disk access, network activity,

or some other operation that is relatively expensive

compared to memory-based processing.

• To reduce this kind of overhead, the Java platform

implements buffered I/O streams
25

Buffered I/O Streams

• Buffered input streams read data from a memory area

known as a buffer; the native input API is called only

when the buffer is empty

• Similarly, buffered output streams write data to a buffer,

and the native output API is called only when the buffer

is full

• A program can convert an unbuffered stream into a

buffered stream using the wrapping mechanism we've

used several times now, where the unbuffered stream

object is passed to the constructor for a buffered stream

class
26

Buffered I/O Streams

• Lets modify the constructor invocations in the

CopyCharacters example to use buffered I/O

• There are four buffered stream classes used to wrap

unbuffered streams:

– BufferedInputStream and BufferedOutputStream create

buffered byte streams

– BufferedReader and BufferedWriter create buffered

character streams

27

Flushing Buffered I/O Streams

• It often makes sense to write out a buffer at critical

points, without waiting for it to fill. This is known as

flushing the buffer

• Some buffered output classes support autoflush,

specified by an optional constructor argument

• When autoflush is enabled, certain key events cause the

buffer to be flushed

• For example, an autoflush PrintWriter object flushes

the buffer on every invocation of the println or format

methods

• To flush a stream manually, invoke its flush method 28

Scanning and Formatting

• Programming I/O often involves translating to and from

the neatly formatted data humans like to work with

• To assist you with these chores, the Java platform

provides two APIs

– The scanner API breaks input into individual tokens

associated with bits of data

– The formatting API assembles data into nicely formatted,

human-readable form.

29

Scanning

• Objects of type Scanner are useful for breaking down formatted

input into tokens and translating individual tokens according to

their data type

• By default, a scanner uses white space to separate tokens

• White space characters include blanks, tabs, and line terminators.

For the full list, refer to the documentation for

Character.isWhitespace.

• The following program ScanXan reads the individual words of a

textfile and prints them out, one per line

30

Scanning

• ScanXan.java

31

Scanning

• Notice that ScanXan invokes Scanner's close method when it is

done with the scanner object

• Even though a scanner is not a stream, you need to close it to

indicate that you're done with its underlying stream

• Input file: xanadu.txt Output to Screen

32

Scanning

• To use a different token separator, invoke useDelimiter(),

specifying a regular expression

• For example, suppose you wanted the token separator to be a

comma, optionally followed by white space. You would invoke

• Scanner also supports tokens for all of the Java language's

primitive types (except for char), as well as BigInteger and

BigDecimal

33

Formatting

• Recall: the formatting API assembles data into nicely formatted,

human-readable form.

• Stream objects that implement formatting are instances of either

PrintWriter, a character stream class, or PrintStream, a byte

stream class

• Note: The only PrintStream objects you are likely to need are

System.out and System.err.

• When you need to create a formatted output stream, instantiate

PrintWriter, not PrintStream. Why?

34

Formatting

• Both PrintStream and PrintWriter implement the same set of

methods for converting internal data into formatted output

• Two levels of formatting are provided:

– print and println format individual values in a standard way

– format formats almost any number of values based on a format

string, with many options for precise formatting

35

Formatting

• Invoking print or println outputs a single value after converting

the value using the appropriate toString method

• The format method formats multiple arguments based on a format

string

• The format string consists of static text embedded with format

specifiers;

• With the exception of the format specifiers, the format string is

unchanged in the output (an example on next slide)

• Format strings support many features, here we cover just a few

• For a complete description: visit:
http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax

36

Formatting

• An Example of a formatted string:

• All format specifiers begin with a % and end with a 1- or 2-

character conversion that specifies the kind of formatted output

being generated

• d formats an integer value as a decimal value

• f formats a floating point value as a decimal value

• n outputs a platform-specific line terminator

37

Formatting

• Some other conversions

• s formats any value as a string

• x formats an integer as a hexadecimal value

• tB formats an integer as a locale-specific month name

• Note: Except for %% and %n, all format specifiers must match

 an argument. If they don't, an exception is thrown

38

Formatting

• In addition to the conversion, a format specifier can contain

several additional elements that further customize the formatted

output.

• Here's an example, Format, that uses every possible kind of

element

39

Formatting

• An explanation of the longer specifier is as follows:

• A complete description of the above is provided at:

 http://docs.oracle.com/javase/tutorial/essential/io/formatting.html

40

Acknowledgement

• The slides are based (in part) on the I/O Streams lesson

of the Online Oracle Java Tutorial

http://docs.oracle.com/javase/tutorial/essential/io/streams.html

41

