L_ecture 22

Java
Input/Output (1/0O) Streams

Dr. Martin O’Connor

CA166
WwWw.computing.dcu.ie/~moconnor

/O Streams

Writing to a Stream

Byte Streams

Character Streams
Line-Oriented 1/O
Buffered I/O Streams
Scanning and Formatting

(\
/O Streams
N

- ™~

« An I/O Stream represents an input source or
an output destination

A stream can represent many different kinds
of sources and destinations, including:

— disk files,

— peripheral devices,
— other programs,

— network sockets

(\
/O Streams
\ 4

= — ~,

o Streams support many different kinds of
data, including simple bytes, primitive data
types, localized characters, and objects

« Some streams simply pass on data; others
manipulate and transform the data in useful
ways

» No matter how they work internally, all
streams present the same simple model to
programs that use them

Reading from a Stream

A stream IS a sequence of data

A program uses an input stream to read data
from a source, one item at a time

]

A\

Stream Program

Hk\\\\ —3

> *-

Lﬂ1ﬂﬂ1ﬂ1ﬂ1ﬂiﬂ L 010010101010

-
= :
rF__=- /

A

Data Source

—

Tﬁ

A

Writing to a Stream

_—

N

« A program uses an output stream to write data to a
destination, one item at time

- 4
Program Stream
. . Z
'::/ - " x | Data Source \/i %
memmmm {muﬂmmmm =
/ —_—

« The data source and data destination can be anything
that holds, generates, or consumes data

« These Includes disk files, another program, a
peripheral device, or a network socket .

Byte Streams

Programs use byte streams to perform input and output
of 8-bit bytes

All byte stream classes are descended from the
InputStream and OutputStream classes

There are many byte stream classes

We'll focus on the file 1/0O byte streams,
FilelnputStream and FileOutputStream

Other Kinds of byte streams are used in much the same
way; they differ mainly in the way they are constructed

v

Byte Streams

7 e

* A program named
CopyBytes which
uses byte streams to
copy a textfile
one byte at a time

import java.io.FileInputS5tream;
import java.io.FileCutputStream;
import java.io.I0Exception:

public class CopvByvtes {
public =tatic void main(String[] args) throws ICException {

FileInputStream in = muall;
FileCutputStream out = null;

try {
in = new FileInputStream("xanadu.txt™)
out = new FileOutputStream("outagain.txt™):

int o3

while ((c = in.read()) '= -1) {
out.write(c):

¥

} fimally {

if (inm "= null) {
in.close():

¥

if (out '= numll) {
out.clo=ze () ;

¥

Byte Streams

- CopyBytes spends most of its time in a simple loop that
reads the input stream and writes the output stream, one
byte at a time S

pL o B B o o e o e f B 0 R
| | S
v

read (b)

i
v
Integer Variable

e

l
write (b)
|

Y
il [X{afrjajdfe] [d
Output Stream

Byte Streams

B

 Notice that read() returns an int value

* |f the input Is a stream of bytes, why doesn't read()
return a byte value?

10

Byte Streams

« Answer: Using a int as a return type allows read() to use
-1 to indicate that It has reached the end of the stream

11

 NOTE: Closing a stream when it's no longer
needed Is very important

« CopyBytes uses a finally block to guarantee
that both streams will be closed even if an
error occurs. This practice helps avoid
serious resource leaks

12

Byte Streams

Byte Streams are a low-level I/O which in practice, you
will not use often

 For files with character data, you will use character
streams.

« There are also streams for more complicated data types.
Thus, Byte streams should only be used for the most
primitive 1/0

« So why talk about byte streams? Because all other
stream types are built on byte streams

13

Character Streams

4

The Java platform stores character values using Unicode
conventions

Character stream |/O automatically translates this
Internal format to and from the local character set

In Western locales, the local character set is usually an
8-bit superset of ASCI|I

For most applications, 1/0O with character streams IS no
more complicated than 1/0O with byte streams

If internationalization isn't a priority, you may use the
character stream classes without paying much attentlon
to character set issues.

e All character stream classes are descended from the
Reader and Writer classes

 As with byte streams, there are character stream classes
that specialize in file 1/0O: FileReader and FileWriter

» The program CopyCharacters illustrates these classes.

15

Using Character Streams

-

inport java.ioc.FileReader;
import java.io.FileWriter;
import java.io.I0Exception:

public clas=s CopyCharacters {
public static volid main(String[] args) throws ICException {

FileBReader inputStream = null;
FileWriter outputStream = null;

try {
inputStream = new FileReader ("xanadua.txt™):

outputStream = new FilelWriter ("characterountput.txt™) ;

int ec»

while ([(c = inputStream.read()) '= -1} {
outputStream.write (c)

}

} finally {

if (inputStream '= null) {
inputStream.clo=e ()

}

if (oumtputStream '= null) {

outputStream. close () ;

» CopyCharacters is very similar to CopyBytes

« The most important difference is that CopyCharacters
uses FileReader and FileWriter for input and output In
place of FileInputStream and FileOutputStream

 Notice that both CopyBytes and CopyCharacters use an
Int variable to read to and write from

« However, in CopyCharacters, the int variable holds a
character value In its last 16 bits; in CopyBytes, the int

variable holds a byte value in its last 8 bits. Why?
17

Using Character Streams

» Example: Reading the characters in from a file and printing
them to screen. import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

ublic c=las= PrintCharactersInFile {

« Note: in.read() returnS = cioiic ctatic void main(string() arge) throws IoException |
an int. To obtain the FileReader in = null;
char value from the int, ey 1
use a type CaSt. in = new FileReader ("xanadu.t=xt");

int c;

char inputChar;

while ({c = in.read()) = -1) {
inputChar = (char) @ s inputChar = {(char) c;
System.out.print (inputchar) ;
}
} finally {
if (in !'= null) {

in.close () ;

}

« Character streams are often "wrappers" for byte streams

» The character stream uses the byte stream to perform the
physical 1/O, while the character stream handles
translation between characters and bytes

» FileReader, for example, uses FilelnputStream, while
FileWriter uses FileOutputStream.

» Note: A FileWriter object can be instantiated from a
File object (An abstract representation of file and
directory pathnames) 19

Using Character Streams

« FileWriter has many constructors

Following syntax creates a FileWriter object given a File object.
FileWriter(File file)
Following syntax creates a FileWriter object given a File object.

FileWriter(File file, boolean append)

Following syntax creates a FileWriter object associated with a file descriptor.

FileWriter(FileDescriptor fd)

Following syntax creates a FileWWriter object given a file name.

FileWriter{3tring fileName)

Following syntax creates a FileWriter object given a file name with a boolean indicating whether or not
to append the data written.

FileWriter(String fileName, boolean append) 20

Line-Oriented I/O

« Character 1/O usually occurs in bigger units than single
characters

e One common unit is the line: a string of characters with
a line terminator at the end.

A line terminator can be a carriage-return/line-feed
sequence ("\r\n"), a single carriage-return ("\r"), or a
single line-feed ("\n")

« Supporting all possible line terminators allows programs
to read text files created on any of the widely used
operating systems

21

Line-Oriented I/O

 Let's modify the CopyCharacters program to use line-
oriented 1/O

e We need to use two new classes: BufferedReader and
PrintWriter

» The CopyLines program on the next slide invokes
BufferedReader.readLine and PrintWriter.printin to do
Input and output one line at a time

22

L_ine-Oriented I/O

F import java.io.FileReader;

import java.io.FileWriter:;
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.ICException;

public clas=z CopyvLines {
public =static wvoid main(String[] args) throws ICException {

BufferedReader inputStream = null;
PrintWriter outputStream = null;

try {
inputStream = new BufferedReader (new FileReader ("xanadu.txt"™)):
cutputStream = new PrintWriter (new FileWriter ("characteroutput.txt™))

String 1;

while ([l = inputStream.readLine()) '= muall) {
ocutputStream.printin{l) ;

}

} finally {

if (inputStream '= mull) {
inputStream.close () ;

¥

if {(outputStream '= mull) {
outputStream.close ()

¥

Line-Oriented I/O

* |nvoking inputStream.readLine() reads in a line of text
from the input file

* |nvoking outputStream.printin() writes out a line of text
to the output file and appends the line terminator for the
current operating system

« NOTE: the line terminator for the current operating

system might not be the same line terminator that was
used in the input file

24

Buffered I/O Streams

Most of the examples we've seen so far use unbuffered
1/0

This means each read or write request is handled directly
by the underlying OS

This makes a program much less efficient, since each
such request often triggers disk access, network activity,
or some other operation that is relatively expensive
compared to memory-based processing.

To reduce this kind of overhead, the Java platform

Implements buffered 1/O streams
25

Buffered I/O Streams

« Buffered Iinput streams read data from a memory area
known as a buffer; the native input API is called only
when the buffer is empty

« Similarly, buffered output streams write data to a buffer,
and the native output API Is called only when the buffer
s full

» A program can convert an unbuffered stream into a
buffered stream using the wrapping mechanism we've
used several times now, where the unbuffered stream
object is passed to the constructor for a buffered stream

class
26

 |ets modify the constructor invocations in the
CopyCharacters example to use buffered 1/O

inputStream = new BufferedReader (new FileReader ("xanadu.txt™)):;
outputStream = new BufferedWriter (new FileWriter ("characteroutput.txXt™)):;

» There are four buffered stream classes used to wrap
unbuffered streams:

— BufferedInputStream and BufferedOutputStream create
buffered byte streams

— BufferedReader and BufferedWriter create buffered
character streams

27

It often makes sense to write out a buffer at critical
points, without waiting for it to fill. This is known as
flushing the buffer

Some buffered output classes support autoflush,
specified by an optional constructor argument

When autoflush is enabled, certain key events cause the
buffer to be flushed

For example, an autoflush PrintWriter object flushes
the buffer on every invocation of the println or format
methods

To flush a stream manually, invoke its flush method “°

- Programming 1/0 often involves translating to and from
the neatly formatted data humans like to work with

 To assist you with these chores, the Java platform
provides two APIs

— The scanner API breaks input into individual tokens
associated with bits of data

— The formatting APl assembles data into nicely formatted,
human-readable form.

29

Scanning

» Objects of type Scanner are useful for breaking down formatted
Input into tokens and translating individual tokens according to
their data type

« By default, a scanner uses white space to separate tokens

« \White space characters include blanks, tabs, and line terminators.
For the full list, refer to the documentation for
Character.isWhitespace.

» The following program ScanXan reads the individual words of a
textfile and prints them out, one per line

30

Scanning

« ScanXan.java

import java.io.¥®;
import java.util.Scanner;

public cla=s=s ScanXan {
public =tatic void main(5tring[] args) throws ICException {

Scanner 3 = null:;

try {
2 = newWw Scanner (new BufferedReader (new FileReader ("xanadu.txt™))):

while (=.hasNext()) f{
System.out.println(s.next()):

}
} finally {
if (= '= null) {
z.close ()
H

Scanning

_—

A

 Notice that ScanXan invokes Scanner's close method when it Is
done with the scanner object

« Even though a scanner iIs not a stream, you need to close it to
Indicate that you're done with its underlying stream

 Input file: xanadu.txt Output to Screen
In Xanadu did Eubla EKhan In
A stately pleasure-dome decree: Xanadu
Where Alph, the =sacred river, ran did
Through caverns measureless o man Fubla
Down to a sunless sea. Khan
iy
stately

pleasure—-dome

32

Scanning

« To use a different token separator, invoke useDelimiter(),
specifying a regular expression

» For example, suppose you wanted the token separator to be a
comma, optionally followed by white space. You would invoke

s.uselelimiter (™, \\a*") ;

 Scanner also supports tokens for all of the Java language's
primitive types (except for char), as well as Biglnteger and
BigDecimal

85

Formatting

« Recall: the formatting APl assembles data into nicely formatted,
human-readable form.

 Stream objects that implement formatting are instances of either
PrintWriter, a character stream class, or PrintStream, a byte
stream class

* Note: The only PrintStream objects you are likely to need are
System.out and System.err.

* \When you need to create a formatted output stream, instantiate
PrintWriter, not PrintStream. Why?

34

Formatting

« Both PrintStream and PrintWriter implement the same set of
methods for converting internal data into formatted output

« Two levels of formatting are provided:

— print and println format individual values in a standard way

— format formats almost any number of values based on a format
string, with many options for precise formatting

35

Formatting

Invoking print or println outputs a single value after converting
the value using the appropriate toString method

The format method formats multiple arguments based on a format
string

The format string consists of static text embedded with format
specifiers;

With the exception of the format specifiers, the format string is
unchanged in the output (an example on next slide)

Format strings support many features, here we cover just a few

For a complete description: visit:
http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.ntml#syntax 35

Formatting

« An Example of a formatted string:

public cla=s=s Rootd {
public =static void main(String[] args) {
int i = 2;
double r = Math.=sgrt (i)

Syvatem.out . format ("The =gquare root of Fd i= ££.%In", i, x©):

}

Here is the output:

The =quare root of 2 i= 1.414214.

 All format specifiers begin with a % and end with a 1- or 2-
character conversion that specifies the kind of formatted output
being generated
« d formats an integer value as a decimal value
« fformats a floating point value as a decimal value
« noutputs a platform-specific line terminator 37

Formatting

« Some other conversions
s formats any value as a string
 x formats an integer as a hexadecimal value
 tB formats an integer as a locale-specific month name

* Note: Except for %% and %n, all format specifiers must match
an argument. If they don't, an exception Is thrown

38

Formatting

,ﬁﬁ
 |In addition to the conversion, a format specifier can contain
several additional elements that further customize the formatted

output.

« Here's an example, Format, that uses every possible kind of
element

public clas=s Format {
public =static wvold main(String[] args) 1
Syvstem.out.format ("%£, %15+4020.10f %n"™, Math.PI):

H
}

Here's the output:

3.141593, +00000003.14155926536

12

Formatting

B

« An explanation of the longer specifier is as follows:

» A complete description of the above is provided at:
http://docs.oracle.com/javase/tutorial/essential/io/formatting.html

40

Acknowledgement

*‘\

\

» The slides are based (in part) on the 1/O Streams lesson
of the Online Oracle Java Tutorial

http://docs.oracle.com/javase/tutorial/essential/io/streams.html

41

