
 Lecture 17 - 18

Multidimensional Arrays and the

ArrayList Class

Dr. Martin O’Connor

CA166

www.computing.dcu.ie/~moconnor

Topics

• Declaring and Instantiating

Multidimensional Arrays

• Aggregate Two-Dimensional Array

Operations

• Higher Multidimensional Arrays

• The ArrayList Class

2

Two-Dimensional Arrays

• Allow organization of data in rows and

columns in a table-like representation.

Example:

Daily temperatures can be arranged as 52 weeks

with 7 days each.

3

Declaring Multidimensional

Arrays

Declaring a two-dimensional array:
 datatype [][] arrayName;

 or

 datatype [][] arrayName1, arrayName2, …;

Declaring a three-dimensional array:

 datatype [][][] arrayName;
 or

 datatype [][][] arrayName1, arrayName2, …;

Examples:

 double [][] dailyTemps, weeklyTemps;
 Auto [][][] cars; 4

Instantiating Multidimensional

Arrays

Instantiating a two-dimensional array:
 arrayName = new datatype [exp1][exp2];

 where exp1 and exp2 are expressions that

 evaluate to integers and specify,

 respectively, the number of rows

 and the number of columns in the array.

Example:

 dailyTemps = new double [52][7];

 dailyTemps has 52 rows and 7 columns,

 for a total of 364 elements.
5

Default Initial Values

When an array is instantiated, the array elements are

given standard default values, identical to the

default values of single-dimensional arrays:

Array data type Default value

byte, short, int, long 0

float, double 0.0

char The null character

boolean false

Any object reference

 (for example, a String)

null

6

Assigning Initial Values

 datatype [][] arrayName =

 { { value00, value01, … },

 { value10, value11, …}, … };

 where valueMN is an expression that

 evaluates to the data type of the array

 and is the value to assign to the element

 at row M and column N.

– The number of sublists determines the number

of rows in the array.

– The number of values in each sublist

determines the number of columns in that row.

Thus, a two-dimensional array can have a

different number of columns in each row.
7

Assigning Initial Values Example

For example, this statement:

 int [][] numbersList1 = { { 0, 5, 10 },
 { 0, 3, 6, 9 } };

 instantiates this array:

8

An Array of Arrays

As the preceding figure illustrates, a two-

dimensional array is an array of arrays.

– The first dimension of a two-dimensional array

is an array of array references, with each

reference pointing to a single-dimensional

array.

– Thus, a two-dimensional array is comprised of

an array of rows, where each row is a single-

dimensional array.

9

Instantiating 2-D Arrays with

Different-Length Rows

To instantiate a two-dimensional array whose

rows have a different number of columns:

 1. instantiate the two-dimensional array

 2. instantiate each row as a single-

dimensional array

 //instantiate the array with 3 rows
 char [][] grades = new char [3][];

 // instantiate each row

 grades[0] = new char [23]; // instantiate row 0

 grades[1] = new char [16]; // instantiate row 1

 grades[2] = new char [12]; // instantiate row 2
10

Accessing Array Elements

Elements of a two-dimensional array are

accessed using this syntax:

 arrayName[exp1][exp2]

– exp1 is the element's row index.

• row index of the first row: 0

• row index of last row: number of rows - 1

– exp2 is the element's column index.

• column index of first column: 0

• column index of last column: number of

columns in that row - 1
11

The Length of the Array

The number of rows in a two-dimensional

array is:

 arrayName.length

The number of columns in row n in a two-

dimensional array is:

 arrayName[n].length

12

Accessing Two-Dimensional Array

Elements

Array element Syntax

Row 0, column j arrayName[0][j]

Row i, column j arrayName[i][j]

Last row, column j arrayName[arrayName.length – 1][j]

Last row, last

column

arrayName[arrayName.length – 1]

 [arrayName

 [arrayName.length -1].length – 1]

Number of rows arrayName.length

Number of columns

in row i

arrayName[i].length

13

Example: Family Cell Bills

• We want to analyze three months of cell

phone bills for a family of four:

14

Aggregate Array Operations

To process all array elements in row order, we

use a nested for loop:

 for (int i = 0; i < arrayName.length; i++)

 {

 for (int j = 0; j < arrayName[i].length; j++)

 {

 // process element arrayName[i][j]

 }

 }

– The outer loop processes the rows.

– The inner loop processes the columns within each row.

15

Processing a Given Row

If we want to find the maximum bill for a

particular month or the total bills for a

month, we need to process just one row.

To process just row i, we use this standard

form:
 for (int j = 0; j < arrayName[i].length; j++)

 {

 // process element arrayName[i][j]

 }

16

Processing a Given Column

If we want to process the cell bills for one person

only, we need to process just one column.

To process just column j, we use this standard

form:
 for (int i = 0; i < arrayName.length; i++)

 {

 if (j < arrayName[i].length)

 // process element arrayName[i][j]

 }

Note: Because rows have variable lengths, we must verify that the

current row has a column j before attempting to process the

element. 17

Processing all Rows and Columns at a Time

If we want to determine the total of the cell bills

for each month, we need to process all rows,

calculating a total at the end of each row.

We use this standard form:
 for (int i = 0; i < arrayName.length; i++)

 {

 // initialize processing variables for row i

 for (int j = 0; j < arrayName[i].length; j++)

 {

 // process element arrayName[i][j]

 } // end inner for loop

 // finish the processing of row i

 } // end outer for loop 18

Failing to initialize the row processing

variables before processing each row is a

logic error and will generate incorrect

results.

Common Error Trap

19

Processing a Column at a Time

• Suppose we want to store test grades for three
courses. Each course has a different number of
tests, so each row has a different number of
columns:

 int [][] grades = { { 89, 75 },
 { 84, 76, 92, 96 },

 { 80, 88, 95 } };

• First, we need to find the number of columns in
the largest row. We use that in our loop condition.

• Then before attempting to process the array
elements, we check whether the given column
exists in the current row. 20

Processing a Column at a Time

(con't)

• Assume we have stored the maximum number of columns

in maxNumberOfColumns; then the general pattern for

processing elements one column at a time is:

 for (int j = 0; j < maxNumberOfColumns; j++)

 {

 for (int i = 0; i < arrayName.length; i++)

 {

 // does column j exist in this row?

 if (j < arrayName[i].length)

 {

 // process element arrayName[i][j]

 }

 }

 } 21

Two-Dimensional Arrays Passed

to and Returned from Methods

• The syntax for a method that accepts a 2-D

array as a parameter is the following:

 returnType methodName(arrayType[][]
 arrayParameterName)

• The syntax for a method that returns a 2-D

array is the following:
 returnArrayType[][] methodName(paramList)

• The caller of the method passes the argument

list and assigns the return value to a reference

to a 2-D array of the appropriate data type. 22

Other Multidimensional Arrays

If we want to keep track of sales on a per-

year, per-week, and per-day basis, we could

use a three-dimensional array:

– 1st dimension: year

– 2nd dimension: week

– 3rd dimension: day of the week

23

3-D Array

Sample Code
// declare a three-dimensional array

double [][][] sales;

// instantiate the array for 10 years, 52 weeks,

// and 7 days

sales = new double [10][52][7];

// set the value of the first element

sales[0][0][0] = 638.50;

// set the value for year 5, week 23, day 4

sales [4][22][3] = 928.20;

// set the last value in the array

sales [9][51][6] = 1234.90;
24

Structure of an n-Dimensional

Array

 Dimension Array Element

first arrayName[i1] is an (n-1)-dimensional

array

second arrayName[i1][i2] is an (n-2)-dimensional

array

kth arrayName[i1][i2][i3][..][ik] is an (n-k)-

dimensional array

(n-1)th arrayName[i1][i2][i3][..][in-1] is a single-

dimensional array

nth arrayName[i1][i2][i3][..][in-1][in] is an

array element

25

General Pattern for Processing a Three-

Dimensional Array

 for (int i = 0; i < arrayName.length; i++)

 {

 for (int j = 0; j < arrayName[i].length; j++)

 {

 for (int k = 0; k < arrayName[i][j].length; k++)

 {

 // process the element arrayName[i][j][k]

 }

 }

 }

26

Code to Print the sales Array

 for (int i = 0; i < sales.length; i++) {

 for (int j = 0; j < sales[i].length; j++) {

 for (int k = 0; k < sales[i][j].length; k++) {

 // print the element at sales[i][j][k]

 System.out.print(sales[i][j][k] + "\t");

 }

 // skip a line after each week

 System.out.println(“”);

 }

 // skip a line after each year

 System.out.println();

 }

27

A Four-Dimensional Array

If we want to keep track of sales on a per-

country, per-year, per-week, and per-day

basis, we could use a four-dimensional

array:

– 1st dimension: country (assume 150 countries)

– 2nd dimension: year (assume 10 years)

– 3rd dimension: week

– 4th dimension: day of the week

double[][][][] sales = new double [150][10][52][7];

 28

General Pattern for Processing a

Four-Dimensional Array

 for (int i = 0; i < arrayName.length; i++)

 {

 for (int j = 0; j < arrayName[i].length; j++)

 {

 for (int k = 0; k < arrayName[i][j].length; k++)

 {

 for (int l = 0; l < arrayName[i][j][k].length; l++)

 {

 // process element arrayName[i][j][k][l]

 }

 }

 }

 }

29

The ArrayList Class

• Arrays have a fixed size after they have been

instantiated.

• What if we don't know how many elements we

will need? For example, if we are

• reading values from a file

• returning search results

• We could create a very large array, but then we

waste space for all unused elements.

• A better idea is to use an ArrayList, which stores

elements of object references and automatically

expands its size, as needed.
30

The ArrayList Class

• The ArrayList class is in the package: java.util

(So it must be imported!)

• All ArrayList elements are object references, so

we could have an ArrayList of Auto objects,

Book objects, Strings, etc.

• To store primitive types in an ArrayList, use the

wrapper classes (Integer, Double, Character,

Boolean, etc.)

• The ArrayList is a generic class.
– The ArrayList class has been written so that it can store object

references of any type specified by the client. 31

Declaring an ArrayList

Use this syntax:
ArrayList<E> arrayListName;

 E is a class name that specifies the type of

object references that will be stored in the

ArrayList.

Example:
 ArrayList<String> listOfStrings;

 ArrayList<Auto> listOfCars;

 ArrayList<Integer> listOfInts;

 32

ArrayList Constructors

• The capacity of an ArrayList is the total

number of elements allocated to the list.

• The size of an an ArrayList is the number of

elements that are used.

Constructor name and argument list

ArrayList<E>

 constructs an ArrayList object of type E with an

initial capacity of 10

ArrayList<E>(int initialCapacity)

 constructs an ArrayList object of type E with the

specified initial capacity

33

Instantiating an ArrayList

This list has a capacity of 10 Astronaut
references, but a size of 0.

 ArrayList<Astronaut> listOfAstronauts =

 new ArrayList<Astronaut>();

This list has a capacity of 5 Strings, but a size

of 0.

 ArrayList<String> listOfStrings =

 new ArrayList<String>(5);

 34

ArrayList Methods

Return

value

Method name and argument list

boolean add(E element)

 appends element to the end of the list

void add(int index, E element)

 Inserts the specified element at the specified position in this

list. Shifts the element currently at that position (if any) and any

subsequent elements to the right (adds one to their indices)

void clear()

 removes all the elements in the list

int size()

 returns the number of elements in the list

E remove(int index)

 removes and returns the element at the specified index

position. Shifts all elements after that position (if any) to the left

(removes one from their indices) 35

More ArrayList Methods

Return value Method name and argument list

E get(int index)

 returns the element at the specified index position;

the element is not removed from the list.

E set(int index, E element)

 replaces the current element at the specified index

position with the specified element and returns the

replaced element.

int indexOf(Object o)

 Returns index of first occurrence of specified

element in this list (or -1 if not present)

Void trimToSize()

 sets the capacity of the list to its current size.
36

Sample Code –

Array Lists

37

Sample Code –

Array Lists

Output is:

• Lookup the Java API (java.util.ArrayList) for

the full list of methods and constructors

available for this class.

38

Processing Array Lists

Using a standard for loop:
ClassName objectIdentifier;

for (int i = 0; i < arrayListName.size(); i++)

{

 currentObject = arrayListName.get(i);

 // process currentObject

}

Example:
Auto currentAuto;

for (int i = 0; i < listOfAutos.size(); i++)

{

 currentAuto = listOfAutos.get(i);

 // process currentAuto

} 39

The Enhanced for Loop

Simplifies processing of lists.

The standard form is:
for (ClassName currentObject : arrayListName)

{

 // process currentObject

}

This enhanced for loop prints all elements of an ArrayList of

Strings named secretList:

for (String s : secretList)

{

 System.out.println(s);

}

40

ArrayList Passed to

and Returned from Methods

• The syntax for a method that accepts an

ArrayList as a parameter is the following:

 returnType methodName(ArrayList<ClassName>
 arrayListParameterName)

• The syntax for a method that returns an

ArrayList is the following:
 ArrayList<ClassName> methodName(paramList)

41

ArrayList Passed to

and Returned from Methods

• An example of passing an ArrayList as a

parameter to a method

• An example of returning an ArrayList from a

method

42

