Lecture 17 - 18

Multidimensional Arrays and the
ArrayList Class

Dr. Martin O’Connor

CA166
www.computing.dcu.ie/~moconnor

Topics

 Declaring and Instantiating
Multidimensional Arrays

» Aggregate Two-Dimensional Array
Operations

» Higher Multidimensional Arrays
* The ArrayList Class

Two-Dimensional Arrays

 Allow organization of data in rows and
columns in a table-like representation.

Example:

Daily temperatures can be arranged as 52 weeks
with 7 days each.

sunday | Monday | Tuesday | Wednesday | Thursday | Friday Saturday
Weel 1 25 286 293 a8 43.1 45,6 43
Weel 2 51.9 379 24,1 =71 =9 40.5 432
Week 51 | 56.2 519 453 487 42.9 5.5 8.2
Weel 52 | 332 271 249 29K =77 9.9 588

Declaring Multidimensional

Arrays

Declaring a two-dimensional array:

datatype [][] arrayName;

or

datatype [][] arrayNamel, arrayNameZ, ..;

Declaring a three-dimensional array:

datatype [][][] arrayName;
or
datatype [][][] arrayNamel, arrayNameZ2, ..;
Examples:
double [][] dailyTemps, weeklyTemps;

Neeo 11101 cars: 4

Instantiating Multidimensional

Arrays

Instantiating a two-dimensional array:

arrayName = new datatype [expl] [exp2];

where expl and expZ2 are expressions that
evaluate to integers and specify,
respectively, the number of rows

and the number of columns 1in the array.

Example:
dailyTemps = new double [b2][7];

dailyTemps has 52 rows and 7 columns,
for a total of 364 elements.

Default Initial VValues

When an array Is instantiated, the array elements are
given standard default values, identical to the
default values of single-dimensional arrays:

Array data type Default value

byte, short, int, long 0
float, double 0.0
char The null character
boolean false
Any object reference null
(for example, a String)

Assigning Initial Values

datatype [][] arrayName =
{ { valueO0O, wvalueOl, .. },
{ valuelO, wvaluell, ..}, .. };

where valueMN 1s an expression that
evaluates to the data type of the array
and 1s the value to assign to the element
at row M and column N.

— The number of sublists determines the number
of rows in the array.

— The number of values in each sublist
determines the number of columns in that row.

Thus, a two-dimensional array can have a
different number of columns in each row.

Assigning Initial VValues Example

/

For example, this statement:

int [][] numbersListl = { { 0, 5, 10 1},
{0131619}};

Instantiates this array:

nunkbersListl

T 0 5 10

row 0 J O] 9] 01 1] 01 2]
rat 1]

L 0 3 i 9

[11 9] (11 101] (11 [£] (11 [=]

An Array of Arrays

As the preceding figure illustrates, a two-
dimensional array Is an array of arrays.

— The first dimension of a two-dimensional array
IS an array of array references, with each
reference pointing to a single-dimensional
array.

— Thus, a two-dimensional array I1s comprised of
an array of rows, where each row Is a single-
dimensional array.

Instantiating 2-D Arrays with

Different-Length Rows

To Instantiate a two-dimensional array whose
rows have a different number of columns:

1. Iinstantiate the two-dimensional array

2. Instantiate each row as a single-
dimensional array

//instantiate the array with 3 rows
char [][] grades = new char [3][];

// instantiatgE=each row

grades[0] = new char [23]; // instantiate row O
grades[l] = new char [1l6]; // instantiate row 1
grades[2] = new char [12]; // instantiate row 2

10

Accessing Array Elements

Elements of a two-dimensional array are
accessed using this syntax:

arrayName [expl] [exp2]
— expl is the element's row index.
 row Index of the first row: 0
 row Index of last row: number of rows - 1
— exp2 Is the element's column index.
 column index of first column: O

e column index of last column: number of

columns iIn that row - 1
11

The number of rows In a two-dimensional
array Is:

arrayName. length

The number of columns in row n in a two-
dimensional array is:

arrayName[n] .length

12

Accessing Two-Dimensional Array

Elements
Array element Syntax
Row 0, column j arrayName [0] [J]
Row i, column j arrayName [1] []]

Last row, columnj |arrayName[arrayName.length — 1] []]

Last row, last arrayName [arrayName.length - 1]
column [arrayName

[arrayName.length -1].length - 1]

Number of rows arrayName.length

Number of columns | arrayName [i] .length
In row I

13

Example: Family Cell Bills

» We want to analyze three months of cell
phone bills for a family of four:

familyCellEill=s
col 0 col 1 col 2 ool 2
(Jdoel (Jlane) [hdikiel (S arah)
l 45 24 5467 22585 26 61
rowy
fduly) (] 3] o] 1] 0] [2] 0] [=]
E;”;Jg 1_‘] |] 8520 4075 27 08 2611
ng.ft.;._ j [1119] [1] [1] [1] [2] [1] [3]
T5 .24 5453 3455 2816
[2] O] [£] [1] [2] [2] [2] [3]

14

Aggregate Array Operations

To process all array elements in row order, we
use a nested for loop:

for (int 1 = 0; 1 < arrayName.length; 1++)

{

for (int j = 0; jJ < arrayName[i].length; j++)

{

// process element arrayName[i] []]

}
}

— The outer loop processes the rows.
— The inner loop processes the columns within each row.

15

Processing a Given Row

If we want to find the maximum bill for a
particular month or the total bills for a
month, we need to process just one row.

To process just row i, we use this standard
form:

for (int j = 0; jJ < arrayName[i].length; j++)
{

// process element arrayName[i] []]

}

16

If we want to process the cell bills for one person
only, we need to process just one column.

To process just column j, we use this standard
form:

for (int 1 = 0; 1 < arrayName.length; i++)
{
1f (J < arrayName[1].length)
// process element arrayName[i] [7J]

}

Note: Because rows have variable lengths, we must verify that the
current row has a column j before attempting to process the
element. 17

Processing all Rows and Columns at a Time

If we want to determine the total of the cell bills
for each month, we need to process all rows,
calculating a total at the end of each row.

We use this standard form:

for (int 1 = 0; 1 < arrayName.length; i++)
{
// initialize processing variables for row i
for (int jJ = 0; jJ < arrayName[1].length; J++)
{
// process element arrayName[i] []J]
} // end inner for loop
// finish the processing of row i
} // end outer for loop 18

Failing to initialize the row processing
variables before processing each row is a
logic error and will generate incorrect
results.

19

» Suppose we want to store test grades for three
courses. Each course has a different number of
tests, so each row has a different number of
columns:

int [][] grades = { { 89, 75 },
{ 84,76, 92, 964},
(w05, 88, 95 } };

First, we need to find the number of columns In
the largest row. We use that in our loop condition.

Then before attempting to process the array
elements, we check whether the given column
exIsts in the current row. 20

Processing a Column at a Time

(con't)

Assume we have stored the maximum number of columns
In maxNumberOfColumns; then the general pattern for
processing elements one column at a time 1is:

for (int j = 0; J < maxNumberOfColumns; J++)

{
for (1nt 1 = 0; 1 < arrayName.length; 1++)
{
// does column j exist in this row?
1if (jJ < arrayName([1].length)
{

// process element arrayName[i] []j]

21

Two-Dimensional Arrays Passed

to and Returned from Methods

* The syntax for a method that accepts a 2-D
array as a parameter Is the following:

returnType methodName (arrayType[][]

arrayParameterName)

* The syntax for a method that returns a 2-D
array Is the following:

returnArrayType|[][] methodName (paramList)

* The caller of the method passes the argument
list and assigns the return value to a reference
to a 2-D array of the appropriate data type. 22

If we want to keep track of sales on a per-
year, per-week, and per-day basis, we could
use a three-dimensional array:

— 1stdimension: year

— 2"d dimension: week
— 39 dimension: day of the week

23

3-D Array

Sample Code

// declare a three-dimensional array

double []J[][] sales;

// instantiate the array for 10 years, 52 weeks,
// and 7 days
sales = new double [10][52][7];

// set the value of the first element
sales[0][0][0] = ©38.50;

// set the value for year 5, week 23, day 4
sales [4][22][3] = 928.20;

// set the last value in the array

sales [9][51][06] = 1234.90; 24

Structure of an n-Dimensional

L Array

7 ~

Dimension Array Element

first arrayName[i,] is an (n-1)-dimensional
array

second arrayName[i][1,] Is an (n-2)-dimensional
array

kth arrayName[i, J[i,1[i1[..1[1,] 1s an (n-k)-
dimensional array

(n-1)th arrayName[i, 1[i,]1[i1[..1[1, ,] Is a single-
dimensional array

nth arrayName[i J[iL,]1[11[.. 101, . 1[1.] Is an
array element

25

General Pattern for Processing a Three-

Dimensional Array

for (int 1 = 0; 1 < arrayName.length; i++)

{
for (int jJ = 0; jJ < arrayName[1].length; j++)

{
for (int k = 0; k < arrayName[1][]J].length; k++)

{

// process the element arrayName[i][]] [k]

26

Code to Print the sales Array

for (int 1 = 0; 1 < sales.length; i++) {
for WEEMT I 0; J < sales[i].length; J++) {
for (int k = 0; k < sales[1][]].length; k++) {

// print the element at sales[i][7] [k]
System.out.print (sales[i][J][k] + "\t");
}

// skip a line after each week
Systemf.out .printlin (V") ;

}

// skip a line after each year

System.out.println();

27

If we want to keep track of sales on a per-
country, per-year, per-week, and per-day
basis, we could use a four-dimensional
array:

— 1stdimension: country (assume 150 countries)
— 2"d dimension: year (assume 10 years)

— 3" dimension: week

— 4™ dimension: day of the week

double[][][][] sales = new double [150][10][52][7]:;

28

General Pattern for Processing a

Four-Dimensional Array

for (int 1 = 0; 1 < arrayName.length; 1i++)
{
for (int j = 0; J < arrayName[i].length; j++)

{
for (int k = 0; k < arrayName[i1][]J].length; k++)

{
for (int 1 = 0; 1 < arrayNamel[i][]J][k].length; 1++)

{

// process element arrayName[i][j][k][1]

29

The ArrayList Class

Arrays have a fixed size after they have been
Instantiated.

What if we don't know how many elements we
will need? For example, if we are

» reading values from a file
e returning search results

We could create a very large array, but then we
waste space for all unused elements.

A better idea Is to use an ArrayList, which stores
elements of object references and automatically

expands Its size, as needed. .

The ArrayList Class

* The ArrayList class Is in the package: java.util
(So It must be imported!)

 All ArrayList elements are object references, so
we could have an ArrayList of Auto objects,
Book objects, Strings, etc.

 To store primitive types in an ArrayList, use the
wrapper classes (Integer, Double, Character,
Boolean, etc.)

* The ArrayList is a generic class.

— The ArrayList class has been written so that it can store object
references of any type specified by the client. =

Declaring an ArrayL.ist

Use this syntax:
ArrayList<E> arrayListName;

E Is a class name that specifies the type of
object references that will be stored in the
ArrayLlist.

Example:
ArraylList<String> 1i1stOfStrings;
ArrayList<Auto> listOfCars;
ArrayList<Integer> 1li1stOfInts;
32

AT aggmesTt<L >

constructs an ArrayL.ist object of type E with an
Initial capacity of 10
ArraylList<E>(int 1nitialCapacity)
constructs an ArrayList object of type E with the
specified initial capacity

* The capacity of an ArrayList Is the total
number of elements allocated to the list.

* The size of an an ArrayList is the number of
elements that are used. =

Instantiating an ArrayL.ist

This list has a capacity of 10 Astronaut
references, but a size of 0.

ArrayList<Astronaut> listOfAstronauts =

new ArraylList<Astronaut>();

This list has a capacity of 5 Strings, but a size
of 0.

ArraylList<String> 1listOfStrings =
new ArrayList<String>(5);

34

ArrayList Methods

Method name and argument list

boolean add(E element)

appends element to the end of the list

void add(int index, E element)

Inserts the specified element at the specified position in this
list. Shifts the element currently at that position (if any) and any
subsequent elements to the right (adds one to their indices)

void clear ()

removes all the elements in the list

int size()
returns the number of elements in the list
E remove (int index)

removes and returns the element at the specified index
position. Shifts all elements after that position (if any) to the left
(removes one from their indices) 35

Method name and argument list

get (1nt index)

returns the element at the specified index position;
the element is not removed from the list.

|

set (int index, E element)

replaces the current element at the specified index
position with the specified element and returns the
replaced element.

int

1ndexOf (Object o)

Returns index of first occurrence of specified
element in this list (or -1 if not present)

Void

trimToSize ()

sets the capacity of the list to its current size.

Sample Code —

Array Lists

pubklic class ArravListDemo {
public static vold main{String arg=[]) {
ff create an array list
ArravList<String> demofrrlList = new ArravList<String>():
System.out.println{"Initial =ize of demclArrlList: "
+ demoArrlList.=size()):

S add elements to the array list

demclArrlist.add{"4L"™) ;

demobrrlist.add("E") !

demobrrlist.add("C")

demohrrlList.add("D") ;

demohrrList.add(l, "E"):

System.out.println{"5ize of demofrrli=st after additions: "
+ demolfrrList.size()):

// display the array list
System.out.println{"Content=s of demcolfrrlist: " 4+ demolrrList):
S/ Bemove elements from the array list
demoblrrlList.remove ("C™)
democlArrList.remove (Z) ;
System.out.println{"S5ize of demofrrlist after deletions: "
+ demoArrlist.zsize()):
System.ount.println{"Contents of demolrrlist: " + demolArrlist);

Sample Code —

Array Lists

Output Is:

Initial =size of demolArrlist: C

S5ize of demolArrli=st after additions: =
Content=s of demolfArrli=st: [A, E, B, C, D]
S5ize of demolArrli=st after deletions: -:
Contents of demcArrList: [A, E, D]

 Lookup the Java API (java.util.ArrayL.ist) for
the full list of methods and constructors

avallable for this class.
38

Processing Array Lists

Using a standard for loop:

ClassName objectIdentifier;
for (int 1 = 0; 1 < arrayListName.size(); 1++)
{

currentObject = arraylListName.get(i);

// process currentObject

}
Example:

Auto currentAuto;
for (int 1 = 0; 1 < listOfAutos.size(),; 1i++)
{

currentAuto = 1listOfAutos.get(1);

// process currentAuto

The Enhanced for Loop

Simplifies processing of lists.
The standard form is:

for (ClassName currentObject : arrayListName)

{

// process currentObject

}

This enhanced for loop prints all elements of an ArrayList of
Strings named secretLIist:

for (String s : secretlList)

{

System.out.println(s);
}

40

ArrayList Passed to

and Returned from Methods

» The syntax for a method that accepts an
ArrayList as a parameter Is the following:

returnType methodName (ArraylList<ClassName>

arrayListParameterName)

» The syntax for a method that returns an
ArrayList is the following:

ArraylList<ClassName> methodName (paramList)

41

ArrayList Passed to

and Returned from Methods

» An example of passing an ArrayList as a
parameter to a method

lpublic static wvoid addFlavors (ArrayList<String> flavorList) {
flavorList.add("Vanilla™);
flavorList.add("Blucsberrv™) ;

-}

« An example of returning an ArrayList from a
method

public ArrayvList<Integer>» getSecretCodes() {
return this.secretCodes;
// where secretCodes may have been declared in the class as

// RArrayList<Integer> secretCodes = new ArraylList<Integer>();

