
Introduction to

Object-Oriented Programming

Concepts

Dr. Martin O’Connor

CA166

www.computing.dcu.ie/~moconnor

Topics

• State and Behaviour

• Data Encapsulation

• Classes and Objects

• Inheritance

• Interfaces

• Packages and API

2

Object-Oriented Programming

(based on the Oracle Java Tutorial)

• An object is a software bundle of related

state and behaviour

• Software objects are often used to model the

real-world objects that you find in everyday

life

• Examples of real world objects: dogs,

bicycles, pens, cars, radios, etc.

• Real-world objects share two

characteristics:

– They all have state and behaviour

3

Examples of Object

- State and Behaviors

• Dogs

– State: name, colour, breed

– Behaviour: barking, fetching, wagging tail

• Bicycles

– State: current gear, current speed, current pedal cadence

– Behaviour: change gear, change cadence, apply brakes

• Radio

– State: On, off, current volume, current station

– Behaviour: turn on, turn off, change volume, change

station, scan

4

Software Objects

• Identifying the state and behaviour for real-world objects is

a great way to begin thinking in terms of object-oriented

programming

• Software objects are conceptually similar to real-world

objects: they too consist of state and related behaviour

• A Software objects

– stores its state in fields (also known as variables)

– exposes its behaviour through methods

• Methods operate on an object's internal state

• Methods serve as the primary mechanism for object-to-

object communication.

• Classes are a blueprint or template used to create specific

objects.

5

Data Encapsulation

• Hiding the internal states and requiring all interaction to be

performed through an object's methods is known as data

encapsulation

• Data encapsulation — is a fundamental principle of

object-oriented programming.

• By encapsulating its own state and behaviour, an object

remains in control of how the outside world is allowed to

use it

• A bicycle modelled

as a software object.

6

Advantages of Data Encapsulation

• Advantages of Data Encapsulation:

– Modularity:

• The source code for an object can be written and

maintained independently of the source code for

other objects.

– Information-hiding:

• By interacting only with an object's methods, the

details of its internal implementation remain hidden

from the outside world.

7

Advantages of Data Encapsulation

(Continued)

• Advantages of Data Encapsulation:

– Code re-use:

• If an object already exists (perhaps written by

another software developer), you can use that object

in your program. Allows for specialists to

implement/debug complex, task-specific objects,

which you can then trust to run in your own code.

– Pluggability and debugging ease

• If a particular object turns out to be problematic, you

can simply remove it from your application and plug

in a different object as its replacement. This is

analogous to fixing mechanical problems in the real

world. If a bolt breaks, you replace it, not the entire

machine. 8

What is a Class?

• In the real world, there are many individual objects - all of

the same kind.

– E.g.: 100’s of bicycles of the same make and model.

• In object-oriented terminology, we say that a particular

bicycle is an instance of the class of objects (bicycles)

• So, a class is the blueprint from which individual objects

are created.

• All Java programs consists of at least one class

• When designing a class, ask yourself:

– What possible states can this object be in?

– What possible behaviour can this object perform?

9

An Example of a Bicycle Class

• One possible implementation in Java of a bicycle class:
(NOTE: class names should always start with a capital letter!)

10

An Example of a Bicycle Class

(Continued)

• The fields cadence, speed, and gear represent the object's

state

• The methods (changeCadence, changeGear, speedUp etc.)

define how the object interacts with the outside world

• NOTE: The Bicycle class does not contain a main method.

– because it is not a complete application; it's just the blueprint

for bicycles that may be used (or created) by an application

– The responsibility of creating and using new Bicycle objects

belongs to some other class in your application

11

BicycleDemo Class

• A BicycleDemo class that demonstrates how to create two

separate Bicycle objects and how to invoke their methods

12

Relevant Terminology

• “Object Reference”

– The identifier of the object

• “Instantiating an object”

– Means creating an object of a class and assigning initial values to

the object’s fields (states)

– Objects must be instantiated before they can be used

(just like a variable must be declared before it can be used).

• “Instance of a class”

– An object after instantiation.

• “Members of a class”

– The class fields and methods

• “Method”

– The Java statements to manipulate the object’s fields or perform

some computations.

13

What is Inheritance?

• Different kinds of objects often have a certain amount in

common with each other

– E.g.: mountain bikes, road bikes, and tandem bikes

• They all share the characteristics of bicycles (current

speed, current pedal cadence, current gear)

• Yet each also defines additional features that make them

different

– tandem bicycles have two seats and two sets of handlebars

– road bikes have drop handlebars

– mountain bikes may have an additional chain ring, giving them a

lower gear ratio, and thus, allowing a cyclist to more easily cycle

up hills

14

What is Inheritance?

(Continued)

• Object-oriented programming allows classes to inherit

commonly used state and behaviour from other classes

• In the example below, Bicycle now becomes the

superclass of MountainBike, RoadBike, and TandemBike

• Each class is allowed to have one (and only one) direct

superclass, and each superclass may have an unlimited

number of subclasses

15

What is Inheritance?

(Continued)

• The syntax in Java for creating a subclass is simple

– At the beginning of your class declaration, use the extends

keyword, followed by the name of the class to inherit from

• The class MountainBike has (inherits) all of the same

fields and methods as the class Bicycle

• However, the class MountainBike can also create new

fields and methods for the particular features that make a

mountain bike unique.

16

Example of Inheritance

• On the left, an example of one possible implementation of a

MountainBike class and

• On the right, an example of a driver program (called

MountainBikeDemo) to demonstrate how to create and use

objects of the MountainBike class

17

What is an Interface?

• We have learnt that objects define their interaction with the

outside world through the methods that they expose

• Thus, methods form the object's interface with the outside

world

– E.g.: the power button on a TV is the interface between the user

(human) and the electrical wiring inside the TV that powers on/off

the TV

• In Java, an interface is a

group of related methods

with empty bodies

• A bicycle's behaviour,

if specified as an interface,

might appear as follows:

18

Example of an Interface

• To implement this interface, the name of your class would

change (to a particular brand of bicycle, for example, such

as ABCDBicycle), and you use the implements keyword in

the class declaration

• Q: Why an Interface?

• Ans: Implementing an interface allows a class to become

more formal about the behaviour it promises to provide.

– Interfaces form a contract between the class and the outside world

– This contract is enforced at build time by the compiler

– All methods defined by an interface must appear in the source code

of a class implementing that interface before the class will

successfully compile.

19

What is a Package?

• A package is a namespace that organises a set of related

classes and interfaces

• Conceptually, packages are similar to different folders on

your computer

– Documents in one folder, Images in another folder, movies in

another folder, music in another, and so on.

• Because software written in Java can be composed of

hundreds or thousands of individual classes, it makes sense

to keep things organized by placing related classes and

interfaces into packages.

20

Application Programming Interface

(API)

• The Java platform provides an enormous class library (a

set of packages) available for use in your own applications.

• This library is known as the "Application Programming

Interface", or "API" for short.

– For example, a String object contains state and behaviour for

character strings

– a File object allows a programmer to easily create, delete, inspect,

compare, or modify a file on the file system

– various GUI objects control buttons and checkboxes and anything

else related to graphical user interfaces

– The Java Platform API Specification contains the complete listing

for all packages, interfaces, classes, fields, and methods supplied

by the Java platform (available online at the Oracle Java Website)

21

How to Reuse a Class

• You don't need to know how the class is written or see the

code of the class

• You do need to know the application programming

interface (API) of the class.

• The API is published and tells you:

– how to create objects

– what methods are available

– how to call the methods

22

