Introduction to
Object-Oriented Programming
Concepts

Dr. Martin O’Connor

CA166
www.computing.dcu.ie/~moconnor

/

Topics

. State and Behaviour

Data Encapsulation
Classes and Objects
Inheritance
Interfaces

Packages and API

ODbject-Oriented Programming

(based on the Oracle Java Tutorlal)

« An object Is a software bundle of related
state and behaviour

 Software objects are often used to model the

real-world objects that you find in everyday
life

« Examples of real world objects: dogs,
bicycles, pens, cars, radios, etc.

 Real-world objects share two
characteristics:

— They all have state and behaviour

Examples of Object

- State and Behaviors

* Dogs
— State: name, colour, breed
— Behaviour: barking, fetching, wagging tail
» Bicycles
— State: current gear, current speed, current pedal cadence
— Behaviour: change gear, change cadence, apply brakes
* Radio
— State: On, off, current volume, current station

— Behaviour: turn on, turn off, change volume, change
station, scan

Software Objects

Identifying the state and behaviour for real-world objects is
a great way to begin thinking in terms of object-oriented
programming

Software objects are conceptually similar to real-world
objects: they too consist of state and related behaviour

A Software objects
— stores its state in fields (also known as variables)
— exposes its behaviour through methods

Methods operate on an object's internal state

Methods serve as the primary mechanism for object-to-
object communication.

Classes are a blueprint or template used to create specific
objects.

Data Encapsulation

« Hiding the internal states and requiring all interaction to be
performed through an object's methods is known as data
encapsulation

« Data encapsulation — is a fundamental principle of
object-oriented programming.

» By encapsulating its own state and behaviour, an object
remains in control of how the outside world is allowed to

use it
A bicycle modelled mph
as a software object. |

5th gear

Advantages of Data Encapsulation

» Advantages of Data Encapsulation:
— Modularity:

» The source code for an object can be written and
maintained independently of the source code for
other objects.

— Information-hiding:
By interacting only with an object's methods, the

details of its internal implementation remain hidden
from the outside world.

Advantages of Data Encapsulation

(Continued)

» Advantages of Data Encapsulation:
— Code re-use:

 If an object already exists (perhaps written by
another software developer), you can use that object
In your program. Allows for specialists to
Implement/debug complex, task-specific objects,
which you can then trust to run in your own code.

— Pluggability and debugging ease

« If a particular object turns out to be problematic, you
can simply remove it from your application and plug
In a different object as its replacement. This is
analogous to fixing mechanical problems in the real

world. If a bolt breaks, you replace it, not the entire
machine. £

What Is a Class?

In the real world, there are many individual objects - all of
the same kind.
— E.g.: 100’s of bicycles of the same make and model.

In object-oriented terminology, we say that a particular
bicycle is an instance of the class of objects (bicycles)

So, a class iIs the blueprint from which individual objects
are created.

All Java programs consists of at least one class

When designing a class, ask yourself:

— What possible states can this object be in?
— What possible behaviour can this object perform?

An Example of a Bicycle Class

« One possible implementation in Java of a bicycle class:
(NOTE: class names should always start with a capital letter!)

class Bicycle {

int cadence = 0;
int speed = 0;
int gear = 1;

void changeCadence (int newValue) {
cadence = newVvValue;
H

void changeGear (int newValue) {
gear = newvalue:

void speedUp(int increment) {
speed = speed + increment;

void applvBrakes(int decrement) f{
speed = speed - decrement;

vold printStates() {
System.out.println("cadence:"™ +
cadence + " speed:™ +
speed + " gear:" 4+ gear):

An Example of a Bicycle Class

(Continued)

The fields cadence, speed, and gear represent the object's
state

The methods (changeCadence, changeGear, speedUp etc.)
define how the object interacts with the outside world
NOTE: The Bicycle class does not contain a main method.

— because it is not a complete application; it's just the blueprint
for bicycles that may be used (or created) by an application

— The responsibility of creating and using new Bicycle objects
belongs to some other class in your application

11

BicycleDemo Class

A BicycleDemo class that demonstrates how to create two
separate Bicycle objects and how to invoke their methods

class BicycleDemo {
public static wvold main(String[] args) {

// Create two different

// Bicycle objects

Bicycle bikel = new Bicycle() s
Bicycle bikeZ new Bicycle():;

// Invoke methods on

// those objects
bikel.changeCadence (50) ;
bikel.speedUp (10) ;
bikel.changeGear (2);
bikel.printStates();

bikeZ.changeCadence (50) ;
bikeZ.speedUp (10) ;
bikeZ.changeGear (2) ;
bikeZ.changeCadence (40) ;
bikeZ.speedUp (10) ;
bikeZ.changeGear (3);
bikeZ.printStates();

Relevant Terminology

“Object Reference”
— The identifier of the object

“Instantiating an object”

— Means creating an object of a class and assigning initial values to
the object’s fields (states)

— Objects must be instantiated before they can be used
(just like a variable must be declared before it can be used).

“Instance of a class”
— An object after instantiation.

“Members of a class”
— The class fields and methods

“Method”

— The Java statements to manipulate the object’s fields or perform
some computations. 13

What iIs Inheritance?

 Different kinds of objects often have a certain amount in
common with each other

— E.g.: mountain bikes, road bikes, and tandem bikes

» They all share the characteristics of bicycles (current
speed, current pedal cadence, current gear)

« Yet each also defines additional features that make them
different
— tandem bicycles have two seats and two sets of handlebars
— road bikes have drop handlebars

— mountain bikes may have an additional chain ring, giving them a
lower gear ratio, and thus, allowing a cyclist to more easily cycle
up hills

14

What iIs Inheritance?

(Continued)

Object-oriented programming allows classes to inherit
commonly used state and behaviour from other classes

In the example below, Bicycle now becomes the
superclass of MountainBike, RoadBike, and TandemBike

Each class is allowed to have one (and only one) direct
superclass, and each superclass may have an unlimited

number of subclasses

What iIs Inheritance?

(Continued)

» The syntax in Java for creating a subclass is simple

— At the beginning of your class declaration, use the extends
keyword, followed by the name of the class to inherit from

class MountainBike extends Bicycle |

// new fields and methods defining
// a mountain bike would go here

« The class MountainBike has (inherits) all of the same
fields and methods as the class Bicycle

 However, the class MountainBike can also create new

fields and methods for the particular features that make a

mountain bike unique. T

Example of Inheritance

/ w

- On the left, an example of one possible implementation of a
MountainBike class and

« On the right, an example of a driver program (called
MountainBikeDemo) to demonstrate how to create and use
objects of the MountainBike class

class MountainBike extends Bicycle | class MountainBikeDemo {
public static wvoid main(Stringl[] args) {
int chainRing = 0;:
// Create a MountainBike object
void changeChainRing (int newValue) { MountainBike mBikel = new MountainBike () ;
chainRing = newvValue:
} // Invoke methods on the
// MountainBlike object
void printMountainBikeStates() { mBikel.changeCadence (50) ;
System.out.println("cadence:" + mBikel.speedUp (10);
cadence + " speed:™ + mBikel.changeGear (2) ;
speed + " gear:" + gear +
" chainRing:" + chainRing):; mBikel.changeChainRing (1) ;
} mBikel.printMountainBikeStates () ;

17

What i1s an Interface?

Y

/@

We have learnt that objects define their interaction with the
outside world through the methods that they expose

Thus, methods form the object's interface with the outside
world

— E.g.: the power button on a TV is the interface between the user
(human) and the electrical wiring inside the TV that powers on/off
the TV

In Java, an interface is a interface Bicycle {
group of related methods // wheel revolutions per minute
Wlth empty bodles vold changeCadence (1nt newValue) ;

void changeGear (int newValue) ;

A bicycle's behaviour,
If specified as an interface,
might appear as follows: \

vold speedUp(int increment) ;

vold applyBrakes (int decrement) ;

18

Example of an Interface

« To Implement this interface, the name of your class would
change (to a particular brand of bicycle, for example, such
as ABCDBicycle), and you use the implements keyword in
the ClaSS dGClaration class LBECOEicycle implements Bicycle {

S remainder of this class
S implemented as before

* Q: Why an Interface?

« Ans: Implementing an interface allows a class to become
more formal about the behaviour it promises to provide.
— Interfaces form a contract between the class and the outside world
— This contract is enforced at build time by the compiler

— All methods defined by an interface must appear in the source code
of a class implementing that interface before the class will
successfully compile.

19

What 1s a Package?

A package Is a namespace that organises a set of related
classes and interfaces

Conceptually, packages are similar to different folders on
your computer

— Documents in one folder, Images in another folder, movies in
another folder, music in another, and so on.
Because software written in Java can be composed of
hundreds or thousands of individual classes, it makes sense
to keep things organized by placing related classes and
Interfaces into packages.

20

Application Programming Interface

(API)

« The Java platform provides an enormous class library (a
set of packages) available for use in your own applications.

 This library is known as the "Application Programming
Interface", or "API" for short.

— For example, a String object contains state and behaviour for
character strings

— a File object allows a programmer to easily create, delete, inspect,
compare, or modify a file on the file system

— various GUI objects control buttons and checkboxes and anything
else related to graphical user interfaces

— The Java Platform API Specification contains the complete listing
for all packages, interfaces, classes, fields, and methods supplied
by the Java platform (available online at the Oracle Java Website)

21

How to Reuse a Class

 You don't need to know how the class is written or see the
code of the class

« You do need to know the application programming
Interface (API) of the class.

« The API is published and tells you:

— how to create objects
— what methods are available
— how to call the methods

22

