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Topics 

• State and Behaviour 

• Data Encapsulation 

• Classes and Objects 

• Inheritance 

• Interfaces 

• Packages and API 
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Object-Oriented Programming 

(based on the Oracle Java Tutorial) 

• An object is a software bundle of related 

state and behaviour 

• Software objects are often used to model the 

real-world objects that you find in everyday 

life 

• Examples of real world objects: dogs, 

bicycles, pens, cars, radios, etc. 

• Real-world objects share two 

characteristics:  

– They all have state and behaviour 
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Examples of Object 

- State and Behaviors 

• Dogs 

– State:  name, colour, breed 

– Behaviour: barking, fetching, wagging tail 

• Bicycles 

– State: current gear, current speed, current pedal cadence 

– Behaviour: change gear, change cadence, apply brakes 

• Radio 

– State:  On, off, current volume, current station 

– Behaviour: turn on, turn off, change volume, change 

station, scan 
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Software Objects 

• Identifying the state and behaviour for real-world objects is 

a great way to begin thinking in terms of object-oriented 

programming 

• Software objects are conceptually similar to real-world 

objects: they too consist of state and related behaviour 

• A Software objects 

– stores its state in fields (also known as variables) 

– exposes its behaviour through methods 

• Methods operate on an object's internal state  

• Methods serve as the primary mechanism for object-to-

object communication. 

• Classes are a blueprint or template used to create specific  

objects. 
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Data Encapsulation 

• Hiding the internal states and requiring all interaction to be 

performed through an object's methods is known as data 

encapsulation 

• Data encapsulation — is a fundamental principle of 

object-oriented programming. 

• By encapsulating its own state and behaviour, an object 

remains in control of how the outside world is allowed to 

use it 

• A bicycle modelled  

as a software object. 
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Advantages of Data Encapsulation 

• Advantages of Data Encapsulation: 

– Modularity:  

• The source code for an object can be written and 

maintained independently of the source code for 

other objects. 

– Information-hiding:  

• By interacting only with an object's methods, the 

details of its internal implementation remain hidden 

from the outside world. 
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Advantages of Data Encapsulation 

(Continued) 

• Advantages of Data Encapsulation: 

– Code re-use: 

•  If an object already exists (perhaps written by 

another software developer), you can use that object 

in your program. Allows for specialists to 

implement/debug complex, task-specific objects, 

which you can then trust to run in your own code. 

– Pluggability and debugging ease 

• If a particular object turns out to be problematic, you 

can simply remove it from your application and plug 

in a different object as its replacement. This is 

analogous to fixing mechanical problems in the real 

world. If a bolt breaks, you replace it, not the entire 

machine. 8 



What is a Class? 

• In the real world, there are many individual objects - all of 

the same kind. 

– E.g.: 100’s of bicycles of the same make and model. 

• In object-oriented terminology, we say that a particular 

bicycle is an instance of the class of objects (bicycles) 

• So, a class is the blueprint from which individual objects 

are created. 

• All Java programs consists of at least one class 

• When designing a class, ask yourself: 

– What possible states can this object be in? 

– What possible behaviour can this object perform? 
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An Example of a Bicycle Class 

• One possible implementation in Java of a bicycle class: 
(NOTE: class names should always start with a capital letter!) 
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An Example of a Bicycle Class 

(Continued) 

• The fields cadence, speed, and gear represent the object's 

state 

• The methods (changeCadence, changeGear, speedUp etc.) 

define how the object interacts with the outside world 

• NOTE: The Bicycle class does not contain a main method. 

– because it is not a complete application; it's just the blueprint 

for bicycles that may be used (or created) by an application 

– The responsibility of creating and using new Bicycle objects 

belongs to some other class in your application 
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BicycleDemo Class 

• A BicycleDemo class that demonstrates how to create two 

separate Bicycle objects and how to invoke their methods 
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Relevant Terminology 

• “Object Reference” 

– The identifier of the object 

• “Instantiating an object” 

– Means creating an object of a class and assigning initial values to 

the object’s fields (states) 

– Objects must be instantiated before they can be used  

(just like a variable must be declared before it can be used). 

• “Instance of a class” 

– An object after instantiation. 

• “Members of a class” 

– The class fields and methods 

• “Method” 

– The Java statements to manipulate the object’s fields or perform 

some computations. 
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What is Inheritance? 

• Different kinds of objects often have a certain amount in 

common with each other 

– E.g.: mountain bikes, road bikes, and tandem bikes 

• They all share the characteristics of bicycles (current 

speed, current pedal cadence, current gear) 

• Yet each also defines additional features that make them 

different 

– tandem bicycles have two seats and two sets of handlebars 

– road bikes have drop handlebars 

– mountain bikes may have an additional chain ring, giving them a 

lower gear ratio, and thus, allowing a cyclist to more easily cycle 

up hills 
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What is Inheritance? 

(Continued) 

• Object-oriented programming allows classes to inherit 

commonly used state and behaviour from other classes 

• In the example below, Bicycle now becomes the 

superclass of MountainBike, RoadBike, and TandemBike 

• Each class is allowed to have one (and only one) direct 

superclass, and each superclass may have an unlimited 

number of subclasses 
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What is Inheritance? 

(Continued) 

• The syntax in Java for creating a subclass is simple 

– At the beginning of your class declaration, use the extends 

keyword, followed by the name of the class to inherit from 

 

 

 

 

 

• The class MountainBike has (inherits) all of the same 

fields and methods as the class Bicycle 

• However, the class MountainBike can also create new 

fields and methods for the particular features that make a 

mountain bike unique. 
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Example of Inheritance 

• On the left, an example of one possible implementation of a 

MountainBike class and  

• On the right, an example of a driver program (called 

MountainBikeDemo) to demonstrate how to create  and use 

objects of the MountainBike class 
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What is an Interface? 

• We have learnt that objects define their interaction with the 

outside world through the methods that they expose 

• Thus, methods form the object's interface with the outside 

world 

– E.g.: the power button on a TV is the interface between the user 

(human) and the electrical wiring inside the TV that powers on/off 

the TV 

• In Java, an interface is a  

group of related methods  

with empty bodies 

• A bicycle's behaviour,  

if specified as an interface,  

might appear as follows: 
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Example of an Interface 

• To implement this interface, the name of your class would 

change (to a particular brand of bicycle, for example, such 

as ABCDBicycle), and you use the implements keyword in 

the class declaration 

 

• Q: Why an Interface? 

• Ans: Implementing an interface allows a class to become 

more formal about the behaviour it promises to provide. 

– Interfaces form a contract between the class and the outside world 

– This contract is enforced at build time by the compiler 

– All methods defined by an interface must appear in the source code 

of a class implementing that interface before the class will 

successfully compile. 
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What is a Package? 

• A package is a namespace that organises a set of related 

classes and interfaces 

• Conceptually, packages are similar to different folders on 

your computer 

– Documents in one folder, Images in another folder, movies in 

another folder, music in another, and so on. 

• Because software written in Java can be composed of 

hundreds or thousands of individual classes, it makes sense 

to keep things organized by placing related classes and 

interfaces into packages. 
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Application Programming Interface 

(API) 

• The Java platform provides an enormous class library (a 

set of packages) available for use in your own applications. 

• This library is known as the "Application Programming 

Interface", or "API" for short. 

– For example, a String object contains state and behaviour for 

character strings 

– a File object allows a programmer to easily create, delete, inspect, 

compare, or modify a file on the file system 

– various GUI objects control buttons and checkboxes and anything 

else related to graphical user interfaces 

– The Java Platform API Specification contains the complete listing 

for all packages, interfaces, classes, fields, and methods supplied 

by the Java platform (available online at the Oracle Java Website) 
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How to Reuse a Class 

• You don't need to know how the class is written or see the 

code of the class  

• You do need to know the application programming 

interface (API) of the class. 

• The API is published and tells you: 

– how to create objects 

– what methods are available  

– how to call the methods 
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