
Dr. Martin O’Connor

www.computing.dcu.ie/~moconnor

A guide to clean, consistent and

well written Java Code

 Java Programming Style Guide

Table of Contents

• Indentation

• Using Spaces

• Class Member Ordering

• Maximum Line Length

• Using Parentheses

• Identifier Naming Conventions

• Method Naming Conventions

• Commenting Conventions

2

Introduction

• The Java language allows you to write code that

would be very difficult for others to understand

• Java also allows you to write code that is very

easy to understand

• Let’s write Java code that is very easy to

understand! 

• This style guide provides a set of directions to

empower you to write code that will be consistent,

easier to read, easier to maintain and less prone to

errors

3

Indentation

• Indentation

– All indenting is done with spaces, not tabs.

– All indents are two or four spaces. Pick either two or

four and stick with it – important to be consistent!

– Reasoning: All programs work well with spaces. Most

programs will mix tabs and spaces so that some lines

are indented with spaces and some with tabs. If your

tabbing is set to 4 and you share a file with someone

that has tabbing set to 8, everything comes out goofy.

4

Indentation

(Continued)

How to Indent

– Matching braces should always line up vertically in the

same column as their construct.

5

How to Indent

• All if, while and for statements must use braces

even if they control just one statement.

Indentation

(Continued)

6

Spacing

Spacing

• All method names should be immediately followed by a

left parenthesis.

• All array dereferences should be immediately followed by

a left square bracket.

• Binary operators should have a space on either side.

7

Spacing

• Unary operators should be immediately preceded or

followed by their operand.

•

• Commas and semicolons are always followed by

whitespace.

Spacing

(Continued)

8

Spacing

(Continued)

Spacing

• All casts should be written with no spaces

• The keywords if, while, for, switch, and catch must be

followed by a space

9

Class Member Ordering

Class Member Ordering

10

Maximum Line Length

Maximum Line Length

• Avoid making lines longer than 120 characters. If your

code starts to get indented way to the right, consider

breaking your code into more methods.

• Reasoning: Editors and printing facilities used by most

programmers can easily handle 120 characters. Longer

lines can be frustrating to work with.

11

Use of Parentheses

Parentheses

• Parentheses should be used in expressions not only to

specify order of precedence, but also to help simplify the

expression. When in doubt, parenthesize.

12

Identifier Naming Convention

Identifiers

• All identifiers use letters ('A' through 'Z' and 'a' through 'z')

and numbers ('0' through '9') only. No underscores, dollar

signs or non-ascii characters

 1 - Classes and Interfaces

– All class and interface identifiers will use mixed case.

The first letter of each word in the name will be

uppercase, including the first letter of the name. All

other letters will be in lowercase, except in the case of

an acronym, which will be all upper case.

13

Identifier Naming Convention

(Continued)

Identifiers

 2 - Packages

– Package names will use lower case characters only. Try

to keep the length under eight (8) characters. Multi-

word package names should be avoided.

14

Identifiers

 3 - All Other Identifiers

– All other identifiers, including (but not limited to) fields,

local variables, constants, methods and parameters, will

use the following naming convention

The first word in the name will always be

in lowercase. The first letter of the second

and subsequent words in the name will

always be in uppercase. All other letters

in the name will be in lowercase, except in

the case of an embedded acronym, which will be all

uppercase. Leading acronyms are always in lowercase.

Identifier Naming Convention

(Continued)

15

Identifiers

 4 – Naming Convention – Variable Names

– Use full English descriptions for names. Avoid using

abbreviations. For example, use names like firstName,

lastName, and middleInitial rather than the shorter

versions fName, lName, and mi.

– Avoid overly long names (greater than 15 characters).

For example, setTheLengthField should be shortened to

setLength.

– Avoid names that are very similar or differ only in case.

For example, avoid using the names product, products,

and Products in the same program for fear of mixing

them up.

Identifier Naming Convention

(Continued)

16

Identifiers

 4 – Naming Convention - Rationale

– You should write your code with the aim of making it

understandable to others and yourself. Others will need

to read and understand your code and one of the major

keys to understanding is through the use of meaningful

identifier names.

– By using meaningful names, you go a long way

towards writing self-documenting code.

Identifier Naming Convention

(Continued)

17

Identifiers

 4 – Naming Convention - self-documenting code.

– That is, code that is understandable on its own without requiring

accompanying comments.

Identifier Naming Convention

(Continued)

18

Identifier Naming Convention

(Continued)

Identifiers

 4 –Constant Naming Convention

– Use ALL_UPPER_CASE for your named constants,

separating words with the underscore character. For

example, use TAX_RATE rather than taxRate or

TAXRATE.

– Avoid using magic numbers in the code. Magic

numbers are actual numbers like 3.142 that appear in

the code that require the reader to figure out what 3.142

is being used for. Consider using named constants for

any number other than 0 and 1.

19

Identifier Naming Convention

(Continued)

Identifiers

 4 –Constant Naming Convention - Rationale

– By using all upper-case for your named constants,

others reading your code will immediately know that

the identifier is a fixed, constant value that cannot be

changed.

– Using meaningful names for constants instead of using

magic numbers in your code makes the code self-

documenting

20

Method Naming Convention

Method Naming Convention

– Try to come up with meaningful method names that

succinctly describe the purpose of the method, making

your code self-documenting and reducing the need for

additional comments.

– Compose method names using mixed case letters,

beginning with a lower case letter and starting each

subsequent word with an upper case letter.

• applyBrakes(), getBalance(), printBanner(),

calcTaxRate()

21

Method Naming Convention

(Continued)

Method Naming Convention - Continued

– Begin method names with a strong action verb.

If the verb is not descriptive enough by itself, include a

noun (for example, addInterest). Add adjectives if

necessary to clarify the noun (for example,

convertToEuroDollars).

– Use the prefixes get and set for getter and setter methods

– Getter methods merely return the value of a instance

variable; setter methods change the value of a instance

variable

• For example, use the method names getBalance and

setBalance to access and change the instance variable

balance

22

Method Naming Convention

(Continued)

Method Naming Convention - Continued

– If the method returns a boolean value, use is or has as

the prefix for the method name

– For example, use isOverdrawn or hasCreditLeft for

methods that return true or false values

– Avoid the use of the word not in the boolean method

name, use the ! operator instead

– For example, use !isOverdrawn instead of

isNotOverdrawn

23

Commenting Convention

Commenting Conventions

– Comments provide yourself and other programmers with

the information helpful to understanding your program

– Use comments to provide overviews or summaries of

chunks of code (logical block of code) and to provide

additional information that is not readily available in the

code itself

– Comment the details of nontrivial or non obvious design

decisions

– Avoid comments that merely duplicate information that is

present in and clear from reading the code

24

