_

T —————

Java Programming Style Guide

A guide to clean, consistent and
well written Java Code

Dr. Martin O’Connor
www.computing.dcu.ie/~moconnor

Indentation

Using Spaces

Class Member Ordering
Maximum Line Length

Using Parentheses

Identifier Naming Conventions
Method Naming Conventions
Commenting Conventions

Introduction

» The Java language allows you to write code that
would be very difficult for others to understand

» Java also allows you to write code that is very
easy to understand

» Let’s write Java code that Is very easy to
understand! ©

 This style guide provides a set of directions to
empower you to write code that will be consistent,
easier to read, easier to maintain and less prone to
errors 3

Indentation

* |Indentation
— All indenting is done with spaces, not tabs.

— All indents are two or four spaces. Pick either two or
four and stick with it — important to be consistent!

— Reasoning: All programs work well with spaces. Most
programs will mix tabs and spaces so that some lines
are indented with spaces and some with tabs. If your
tabbing is set to 4 and you share a file with someone
that has tabbing set to 8, everything comes out goofy.

Indentation
(Continued)

How to Indent

— Matching braces should always line up vertically in the
same column as their construct.

public class HelloWorld
{

....public void greetUser(int currentHour)

|
iev-.-..8ystem.out.print ("Good") ;

........ if (currentHour < AFTERNOON)

iev-n...8ystem.out.println{ "Afternoon") :

Note: The period char (.) is used to show indentation 5

Indentation

(Continued)

How to Indent

 All if, while and for statements must use braces
even If they control just one statement.

if (superHero == theTick) System.out.println("Spoon!™); [/ HO!

if (superHero = theTick)
System.out.println("Spoon!™); S/ HO!

if (superHeroc — theTick) {
System.out.println("Spoon!™) -
} ff HO!
if (superHero == theTick)
{
System.out.println("Spoon!™) -
} /f YES!

Spacing

4;;:::;;;;;;;?;;;;=;;;;;————————_——_——_—___________________________________i_fiﬁ@
Spacing
 All method names should be immediately followed by a
left parenthesis.

foo (i, j): F/F HO!
foo(i, j): J/ YES!

 All array dereferences should be immediately followed by

a left square bracket. zrg= 101; s/ wo
args[0]: /f YES!

 Binary operators should have a space on either side.

a=b+c; S/ HO!
a = b+c: ff HO!
a=b + i S/ HO!
a =5k + o S/ YES!
Z = 2*K + J*y; ff HO!
Z =2 % X + 3 % y; ff YES!

Z (2 * x) + (3 * yv)y; //f YES!

Spacing

(Continued)

P —————————————————eeee.|

Spacing
» Unary operators should be immediately preceded or
followed by their operand.

coant ++; S/ NO!
count++; Jf/ YES!

i ——; Ff HO!
° i-—; //f YES!

« Commas and semicolons are always followed by
whitespace.

for (int i = 0;1i < 10;i++) ff HO!
for (int i = 0; i < 10; i++) // YES!

getPancakes (syrupQuantity,butterQuantity); Jf/ HO!
getPancakes (syrupQuantity, butterQuantity); /S YES!

Spacing

(Continued)

| ——— —_ T R

Spacing
 All casts should be written with no spaces

(MyClass) v.get(3): J/ HO!
{ MyClass)v.get(3); [/ HO!
(MyClass)v.get (3); ff YES!

» The keywords if, while, for, switch, and catch must be
followed by a space

if (hungry) [/ HO!
if (hungry) // YES!

while (pancakes < 7) S/ HO!
while (pancakes < 7) f/ YES!

for(int i = 0; i < 10; i++) J/ NHO!
for (int i = 0; i < 10; i++) f/ YES!

catch (TooManyPancakesException) J/ HO!
catch (TooManyPancakesException e) f/ YES! 9

Class Member Ordering

/

e S —
Class Member Ordering

T

class Order
{
// fields ([attributes)

S/ constructors

J/ methods

10

Maximum Line Length

Maximum Line Length

« Avoid making lines longer than 120 characters. If your
code starts to get indented way to the right, consider
breaking your code into more methods.

« Reasoning: Editors and printing facilities used by most

programmers can easily handle 120 characters. Longer
lines can be frustrating to work with.

11

Use of Parentheses

Parentheses

 Parentheses should be used in expressions not only to
specify order of precedence, but also to help simplify the
expression. When in doubt, parenthesize.

12

Ildentifier Naming Convention

Identifiers

« All identifiers use letters (‘A' through 'Z" and 'a' through 'z")
and numbers ('0' through '9") only. No underscores, dollar
signs or non-ascii characters

1 - Classes and Interfaces

— All class and interface identifiers will use mixed case.
The first letter of each word in the name will be
uppercase, including the first letter of the name. All
other letters will be in lowercase, except in the case of
an acronym, which will be all upper case. Examples:

Customer
SalesQOrder

TargetURL
URLTarget13

Ildentifier Naming Convention

(Continued)

Identifiers

2 - Packages

— Package names will use lower case characters only. Try
to keep the length under eight (8) characters. Multi-
word package names should be avoided.

Examples:

COMmMmon
core
lang

14

Ildentifier Naming Convention

(Continued)

|dentifiers
3 - All Other Identifiers

— All other identifiers, including (but not limited to) fields,
local variables, constants, methods and parameters, will
use the following naming convention

The first word in the name will always be Examples:

In lowercase. The first letter of the second R
and subsequent words in the name will salesOrder

- addToTotal()
always be in uppercase. All other letters targetURL
In the name will be in lowercase, except in urlTarget

the case of an embedded acronym, which will be all
uppercase. Leading acronyms are always in lowercase.

15

Ildentifier Naming Convention

(Continued)

Identifiers
4 — Naming Convention — VVariable Names

— Use full English descriptions for names. Avoid using
abbreviations. For example, use names like firstName,
lastName, and middlelnitial rather than the shorter
versions fName, IName, and mi.

— Avoid overly long names (greater than 15 characters).
For example, setThelLengthField should be shortened to
setLength.

— Avoid names that are very similar or differ only in case.
For example, avoid using the names product, products,
and Products in the same program for fear of mixing

them up. e

Ildentifier Naming Convention

(Continued)

Identifiers
4 — Naming Convention - Rationale

— You should write your code with the aim of making it
understandable to others and yourself. Others will need
to read and understand your code and one of the major
keys to understanding is through the use of meaningful
Identifier names.

— By using meaningful names, you go a long way
towards writing self-documenting code.

17

Ildentifier Naming Convention

(Continued)

P —————————————————eeee.|

Identifiers
4 — Naming Convention - self-documenting code.

— That is, code that is understandable on its own without requiring
accompanying comments.

double taxl; // sales tax rate (example of poor wvariable name)
double tax?; // income tax rate (example of poor variable name)
double salesTaxRate; J//no comments required due to

double incomeTaxRate; //self-documenting wvariable names

18

Ildentifier Naming Convention

(Continued)

Identifiers

4 —Constant Naming Convention

— Use ALL_UPPER_CASE for your named constants,
separating words with the underscore character. For
example, use TAX RATE rather than taxRate or
TAXRATE.

— Avoid using magic numbers in the code. Magic
numbers are actual numbers like 3.142 that appear In
the code that require the reader to figure out what 3.142
IS being used for. Consider using named constants for
any number other than 0 and 1.

19

Ildentifier Naming Convention

(Continued)

Identifiers
4 —Constant Naming Convention - Rationale

— By using all upper-case for your named constants,
others reading your code will immediately know that
the identifier is a fixed, constant value that cannot be
changed.

— Using meaningful names for constants instead of using
magic numbers in your code makes the code self-
documenting

day = (3 + numberOfDays) % 7; J//NO! uses magic numbers

final int WEDNESDAY = 3;
final int DAYS IN WEEK = T;

day = (WEDNESDAY + numberOfDays) % DAYS IN WEEK; /[/Yes, self—dccumgg%ing

Method Naming Convention

Method Naming Convention

— Try to come up with meaningful method names that
succinctly describe the purpose of the method, making
your code self-documenting and reducing the need for
additional comments.

— Compose method names using mixed case letters,
beginning with a lower case letter and starting each
subsequent word with an upper case letter.

 applyBrakes(), getBalance(), printBanner(),
calcTaxRate()

21

Method Naming Convention

(Continued)

Method Naming Convention - Continued

— Begin method names with a strong action verb.
If the verb is not descriptive enough by itself, include a
noun (for example, addInterest). Add adjectives if
necessary to clarify the noun (for example,
convertToEuroDollars).

— Use the prefixes get and set for getter and setter methods

— Getter methods merely return the value of a instance
variable; setter methods change the value of a instance
variable

« For example, use the method names getBalance and
setBalance to access and change the instance variable

balance 22

Method Naming Convention

(Continued)

Method Naming Convention - Continued

— If the method returns a boolean value, use iIs or has as
the prefix for the method name

— For example, use isOverdrawn or hasCreditLeft for
methods that return true or false values

— Avoid the use of the word not in the boolean method
name, use the ! operator instead

— For example, use !isOverdrawn instead of
ISNotOverdrawn

23

Commenting Convention

Commenting Conventions

— Comments provide yourself and other programmers with
the information helpful to understanding your program

— Use comments to provide overviews or summaries of
chunks of code (logical block of code) and to provide
additional information that is not readily available in the
code itself

— Comment the details of nontrivial or non obvious design
decisions

— Avoid comments that merely duplicate information that is
present in and clear from reading the code

24

