
13 POISSON DISTRIBUTION

Examples

1. You have observed that the number of hits to your web
site occur at a rate of 2 a day.

Let X be be the number of hits in a day

2. You observe that the number of telephone calls that
arrive each day on your mobile phone over a period of
a year, and note that the average is 3.

Let X be the number of calls that arrive in any one
day.

3. Records show that the average rate of job submissions

in a busy computer centre is 4 per minute.
Let X be the number of jobs arriving in any one minute.

4. Records indicate that messages arrive to a computer

server at the rate of 6 per hour.
Let X be the number of messages arriving in any one

hour.



Generally

X = number of events, distributed independently in time,

occurring in a fixed time interval.

X is a Poisson variable with pdf:

P (X = x) = e−λ
λx

x!
, x = 0, 1, . . . ,∞

where λ is the average.

Example:

Consider a computer system with Poisson job-arrival stream
at an average of 2 per minute. Determine the probability

that in any one-minute interval there will be

(i) 0 jobs;

(ii) exactly 2 jobs;

(iii) at most 3 arrivals.

(iv) What is the maximum jobs that should arrive one minute

with 90 % certainty?



Solution: Job Arrivals with λ = 2
(i) No job arrivals:

P (X = 0) = e−2 = .135

In R

dpois(0, 2)

[1] 0.1353353

(ii) Exactly 3 job arrivals:

P (X = 3) = e−223

3!
= .18

In R

dpois(3, 2)

[1] 0.1804470

(iii) At most 3 arrivals

P (X ≤ 3) = P (0) + P (1) + P (2) + P (3)

= e−2 + e−22

1
+ e−222

2!
+ e−22

3

3!
= 0.1353 + 0.2707 + 0.2707 + 0.1805

= 0.8571

In R

ppois(3,2)

[1] 0.8571235

more than 3 arrivals:

P (X > 3) = 1 − P (X ≤ 3)

= 1 − 0.8571

= 0.1429



(iv) Maximum arrivals with at least 90% certainty:

i.e. 90% quantile

Choose k so that

P (X ≤ k) ≥ .9

In R

qpois(.9, 2)

[1] 4

at least a 90% chance that the number of job submissions
in any minute does not exceed 4.

equivalently

less than a 10% chance that there will be more than 4
job submissions in any one minute.



Poisson Probability Density Functions
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Poisson Probability Density Functions

par(mfrow = c(2,2)) # multiframe

x<-0:12 #look at the first 12 probabilities

plot (x, dpois(x, 2),

xlab = "Number of Hits", ylab = "P(X = x)",

type = "h", main= "Web Site Hits: Poisson(2)")

plot (x, dpois(x, 3),

xlab = "Number of Calls", ylab = "P(X = x)",

type = "h", main= "Calls to Mobile: Poisson(3)")

plot (x, dpois(x, 4),

xlab = "Number of Submissions", ylab = "P(X = x)",

type = "h", main= "Job Submissions: Poisson(4)")

plot (x, dpois(x, 6),

xlab = "Number of Messages", ylab = "P(X = x)",

type = "h", main= "Messages to Server: Poisson(6)")



Poisson Cumulative Distribution Functions
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Poisson Cumulative Distribution Functions

par(mfrow = c(2,2)) # multiframe

x<-0:12

plot (x, ppois(x, 2),

xlab = "Number of Hits", ylab = "P(X = x)",

type = "s", main= "Web Site Hits:lambda=2")

plot (x, ppois(x, 3),

xlab = "Number of Calls", ylab = "P(X = x)",

type = "s", main= "Calls to Mobile:lambda=3")

plot (x, ppois(x, 4),

xlab = "Number of Submissions", ylab = "P(X = x)",

type = "s", main= "Submissions:lambda=4")

plot (x, ppois(x, 6),

xlab = "Number of Messages", ylab = "P(X = x)",

type = "s", main= "Server Messages:lambda=6", )



Derivations of Some Properties of Poisson

1. Clearly

e−λ
λx

x!
> 0 since λ > 0

Also
∞
∑

x=0

e−λ
λx

x!
= 1

since

eλ = 1 + λ +
λ2

2!
+

λ3

3!
+ · · ·

i.e.
∞
∑

x=0

λx

x!
= eλ

2. E(X) = λ

E(X) =
∞
∑

x=0

xe−λ
λx

x!

= e−λ
∞
∑

x=1

x
λx

x!

= e−λ
∞
∑

x=1

λx

(x − 1)!

= e−λλ





∞
∑

x=1

λx−1

(x − 1)!





= e−λλ



1 +
λ

1!
+

λ2

2!
+ . . .





= e−λλeλ = λ



APPLICATIONS OF THE POISSON

The Poisson distribution arises in two ways:

1. Events distributed independently of one an-

other in time:

X = the number of events occurring in a fixed time

interval has a Poisson distribution.

PDF : p(x) = e−λ
λx

x!
, x = 0, 1, 2, · · · ; λ > 0

Example: X = the number of telephone calls in an
hour.

2. As an approximation to the binomial when p

is small and n is large,

When examining the number of defectives in a large
batch where p, the defective rate, is usually small.



Example:

The manufacturer of the disk drives in one of the well-known
brands of microcomputers expects 2% of the disk drives to

malfunction during the microccomputer’s warranty period.

Calculate the probability that in a sample of 100 disk drives,
that not more than three will malfunction.

No. of disk drives Binomial Poisson

malfunctioning Approximation

k
(

100
k

)

.02k.98100−k e−22k/k!

0 0.13262 0.13534
1 0.27065 0.27067

2 0.27341 0.27067
3 0.18228 0.18045

Total 0.85890 0.85713



Poisson as an approximation to the binomial

when n is large p is small

Recall:

• mean of binomial = np

• mean of Poisson = λ

PDF of Binomial

P (x) =





n

x



px(1 − p)n−x; p =
λ

n

=





n

x





(

λ

n

)x (

1 −
λ

n

)n−x

=
n!

x!(n − x)!

λx

nx

(1 −
λ

n
)n

(

1 −
λ

n

)x →
λx

x!
e−λ

Now

(1 −
λ

n
)n

→ e−λ as n → ∞

(1 −
λ

n
)x

→ 1 as n → ∞

n!

(n − x)!nx
=

n(n − 1) . . . (n − (x − 1))

nx

= 1(1 −
1

n
)(1 −

2

n
) . . . (1 −

x − 1

n
) → 1



Some Examples

1. Messages arrive to a server at the rate of 6 per hour.
What is the maximum number k so that the probability that

the number of messages to the server in an hour more than
this value is .75

Solution

qpois(.75, 6)

[1] 8

At least a 75% chance of ≤ 8 messages

25% change of > 8; i.e. 3rd quartile.

For 1st quartile,

qpois(.25, 6)

[1] 4

Interquartile range: [4, 8],

i.e.

50% of the time, arrivals will be between 4 and 8.



Example:

A web server receives an average of 1000 queries per day.
How much excess capacity should it build in to be 95% sure

that it can meet the demand?

Poisson with λ = 1000

Choose k so that

P (X ≤ k) ≥ .95

qpois(.95, 1000)

[1] 1052

and to double check

ppois(1052, 1000)

[1] 0.9506515

The extra capacity needed is 52.



Example:

The mean number of errors due to a particular bug oc-
curring in a minute is 0.0001

1. What is the probability that no error will occur in 20

minutes?

2. How long would the program need to run to ensure that
there will be a 99.95% chance that an error will show
up to highlight this bug?

Solution

Poisson λ = .0001 per minute λ = 20(.0001) = .002 per

20 minute interval.

probability that no error will occur in 20 min:

P (0) = e−.002 = 0.998002

99.88% chance OF 0 in 20 min.

Equivalently

1.12% that an error will show up in the first 20 minutes.

For 99.95% sure of catching bug:

P (X ≥ 1) ≥ .9995,

or equivalently
P (X = 0) = .0005

P (No occurrence in k minutes) = e−(.0001)k



To be 99.95% sure, choose k so that

e−(.0001)k
≤ .0005

or equivalently

1 − e−(.0001)k
≥ .9995

k > 75,000 mins
k ¿ 75000/60 = 1250 hours
k . 1250/24 = 52 days

In R we can examine the probabilities of at least one er-

ror in differing timespans:

k<-seq(50000,100000, 5000) #Running time in 5,000 int.

y<-1-exp(-(.0001)*k) #At least one in k minutes

plot(k,y, xlab = "Running time of the package in minutes",

ylab = "Probability of at least one bug")

abline(h = .9995)
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Example:

The average number of defects per wafer (defect density)
is 3. The redundancy built into the design allows for up to

4 defects per wafer. What is the probability that the redun-
dancy will not be sufficient if the defects follow a Poisson

distribution?

Poisson with λ = 4.

For k defects:

P (X = k) = e−33
k

k
where X be the number of defects per wafer.

The redundancy will not be sufficient when X > 4.

P (X > 4)

= 1 − (P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4))

= 1 − e−3(1 +
31

1
+

32

2!
+

33

3!
+

34

4!
)

In R we obtain P (X > 4) using ppois

1-ppois(4, 3)

[1] 0.1847368

over an 18% chance that the defects will exceed redundancy.



R Functions for the Poisson Distribution

• dpois

dpois(x = 4, lambda = 3)

or

dpois(4, 3)

P (X = 4) λ = 3

• ppois

ppois(x = 4, \lambda = 3)

or

ppois(4, 3)

P (X ≤ 4) with λ = 3

• qpois

qpois(.95, lambda = 3)

or

qpois(.95, 3)

[1] 7

Choose k so that

P (X ≤ k) ≥ .95.

> qpois(.95, 3)

[1] 6


